NAD+

别名: β-DPNNSC-20272; Nadide; NSC 20272; NSC20272; nadide; coenzyme I; 53-84-9; beta-NAD; Codehydrogenase I; diphosphopyridine nucleotide; Codehydrase I; nicotinamide adenine dinucleotide; beta-NAD; beta NAD; Enzopride Nadida; Codehydrase I; nadide; 53-84-9; NAD+; coenzyme I; beta-NAD; Codehydrogenase I; diphosphopyridine nucleotide; beta-nicotinamide adenine dinucleotide;NAD; NAD+; Nadidum; Nicotinamide; adenine dinucleotide 辅酶I;烟酰胺腺嘌呤二核苷酸;烟酰胺腺嘌呤双核苷酸;烟酰胺腺嘌呤双核甙酸;β-烟酰胺腺嘌呤二核苷酸;β-烟酰胺腺嘌呤二核苷酸水合物,氧化型[生物化学用];NAD(氧化型辅酶I烟酰胺腺嘌呤二核苷酸)II级;NAD+ 氧化型辅酶Ⅰ;NAD�氧化型辅酶Ⅰ;β-烟酰胺腺嘌呤二核苷酸(NAD); 辅酶A;辅酶I (β-NAD);辅酶I 氧化型辅酶I;辅酶I(NAD)氧化型;酵母源β-烟酰胺腺嘌呤二核苷酸;烟酰胺腺嘌呤双核苷酸,BR;氧化型辅酶 Ⅰ;氧化型辅酶 I;氧化型辅酶Ⅰ NAD;Beta-烟酰胺腺嘌呤二核苷酸;Beta-烟酰胺腺嘌呤二核苷酸水合物,氧化型;B-辅酶A;β-烟酰胺腺嘌呤二核苷酸水合物;辅酶1;烟酰胺腺嘌呤;烟酰胺腺嘌呤双核苷酸, 烟酰胺腺嘌呤双核甙酸, 辅酶I;辅酶ⅠNAD(H)含量测试盒;二磷酸吡啶核苷酸;辅酶;烟酰胺腺嘌呤二核苷酸 水合物,氧化型;烟酰胺腺嘌呤双核甙酸 水合物,氧化型;烟酰胺腺嘌呤双核苷酸 水合物,氧化型;辅酶 1;辅酶 A;β-烟酰胺腺嘌呤二核苷酸 水合物;辅酶 I;烟酰胺腺嘌呤双核苷酸 氧化型辅酶 I;氧化型辅酶I;NAD烟酰胺腺嘌呤二核苷酸
目录号: V30233 纯度: ≥98%
NAD+ 是一种天然存在的辅酶、氧化剂和电子受体,由通过焦磷酸键与腺苷 5-磷酸偶联的核糖基烟酰胺 5-二磷酸组成。
NAD+ CAS号: 53-84-9
产品类别: Endogenous Metabolite
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
100mg
500mg
1g
5g
10g
Other Sizes

Other Forms of NAD+:

  • NAD+-13C5-1 (nicotinamide adenine dinucleotide-13C5-1)
  • NAD+ lithium (nicotinamide adenine dinucleotide lithium salt; β-DPN lithium; β-NAD lithium; β-Nicotinamide Adenine Dinucleotide lithium)
  • 辅酶I Trihydrate
  • NAD sodium (β-DPN sodium; β-NAD sodium; β-Nicotinamide Adenine Dinucleotide sodium)
  • NADH
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥99%

纯度: ≥98%

纯度: ≥98%

纯度: ≥99%

纯度: ≥98%

产品描述
NAD+ 是一种天然存在的辅酶、氧化剂和电子受体,由通过焦磷酸键与腺苷 5'-磷酸偶联的核糖基烟酰胺 5'-二磷酸组成。
生物活性&实验参考方法
靶点
Endogenous Metabolite
体外研究 (In Vitro)
NAD+是由连接腺苷5'-磷酸和核糖基烟酰胺5'-二磷酸的焦磷酸键组成的辅酶。 NADH 的氧化形式称为 NAD+ [1]。 NAD+ 在自然界中广泛存在,通过氧化 (NAD+) 和还原 (Nadide) 之间的交替,在众多酶活性中充当电子载体 [2]。
复合物I的超氧化物生成受到NAD+的强烈抑制(图1A),因此图4A、B和D中的数据是通过使用再生系统来维持[NADH]并最小化[NAD+]而记录的。否则,NADH在≈0.2μM min−1时转化为NAD+,导致测定痕迹明显弯曲,特别是在低[NADH]时(图4C)。对于O2•−,NADH的KM(app)为0.05μM。重要的是,NAD+不会通过使复合物I的NADH氧化成为限速来发挥其抑制作用。例如,30μM NAD+可减少约50%的O2•−形成,但不会影响更快的[Fe(CN)6]3−、[Ru(NH3)6]3+或癸基泛醌还原。我们的观察强烈表明,NADH、NAD+和复合物I的不同状态(氧化、还原、无核苷酸或核苷酸结合)之间建立了预平衡,以确定复合物中有多少能够减少O2,从而确定O2•−的形成速率。
超氧化物形成的分子机制:纯化络合物I形成的超氧化物不受癸基泛醌的直接影响,也不受催化过程中放大的影响(图1)。因此,FMN或其中一个FeS簇是控制O2还原的辅因子,辅因子X。如果辅因子X是FeS簇,则根据能斯特方程,NAD+与NADH一起作用,以设定其平衡还原水平。如果辅因子X是黄素,那么活性位点的占据会对前平衡产生额外的影响,并可能影响双分子反应的速率,因为结合的核苷酸可能会阻止或阻碍氧气的进入。 图5A显示了改变[NADH]/[NAD+]比对O2•−产生的影响,绘制为辅因子X的氧化还原滴定(方程式1)[3]。
体内研究 (In Vivo)
口服 NAD+ 补充剂已被用来治疗能量消耗、不明原因的疾病,如纤维肌痛和慢性疲劳综合症,以及简单的疲倦 [3]。
酶活实验
使用NADH和NAD+的氧化还原滴定。[3]
NADH在手套箱(O2<2ppm)中通过阴离子交换色谱法(5-ml HiTrap Q-Sepharose柱)重新纯化,以去除污染的NAD+。实验后,重新评估NADH储备溶液的完整性(在6小时内形成0.08±0.04%的NAD+)。通常,通过使用30μM NADH和不同量的NAD+(Sigma)来设置氧化还原电位,并通过使用NADH再生系统来检查低电位极限

EPR。[3]
复合物I(10 mg ml−1)被1 mM纯化的NADH厌氧还原,或通过对纯化的NADH(≈−0.4 V)的透析还原,或使用1 mM NADH和10 mM NAD+还原至≈−0.3 V,并立即冷冻。使用ER 4119HS高灵敏度腔和ESR900连续流液氦低温恒温器[3],在Bruker EMX X波段光谱仪上记录光谱。
动物实验
NADH:ubiquinone oxidoreductase (complex I) is a major source of reactive oxygen species in mitochondria and a significant contributor to cellular oxidative stress. Here, we describe the kinetic and molecular mechanism of superoxide production by complex I isolated from bovine heart mitochondria and confirm that it produces predominantly superoxide, not hydrogen peroxide. Redox titrations and electron paramagnetic resonance spectroscopy exclude the iron-sulfur clusters and flavin radical as the source of superoxide, and, in the absence of a proton motive force, superoxide formation is not enhanced during turnover. Therefore, superoxide is formed by the transfer of one electron from fully reduced flavin to O2. The resulting flavin radical is unstable, so the remaining electron is probably redistributed to the iron-sulfur centers. The rate of superoxide production is determined by a bimolecular reaction between O2 and reduced flavin in an empty active site. The proportion of the flavin that is thus competent for reaction is set by a preequilibrium, determined by the dissociation constants of NADH and NAD+, and the reduction potentials of the flavin and NAD+. Consequently, the ratio and concentrations of NADH and NAD+ determine the rate of superoxide formation. This result clearly links our mechanism for the isolated enzyme to studies on intact mitochondria, in which superoxide production is enhanced when the NAD+ pool is reduced. Therefore, our mechanism forms a foundation for formulating causative connections between complex I defects and pathological effects.[3]
毒性/毒理 (Toxicokinetics/TK)
mouse LD50 intraperitoneal 4333 mg/kg Pharmaceutical Chemistry Journal, 20(160), 1986
参考文献

[1]. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond), 2012. 122(6): 253-70.

[2]. Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem, 2006. 75: 69-92.

[3]. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci U S A, 2006. 103(20): 7607-12.

其他信息
NAD zwitterion is a NAD. It has a role as a geroprotector. It is functionally related to a deamido-NAD zwitterion. It is a conjugate base of a NAD(+).
A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)
Nadide has been reported in Homo sapiens with data available.
Nadide is a dinucleotide of adenine and nicotinamide. It has coenzyme activity in redox reactions and also acts as a donor of ADP-ribose moieties.
A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)
Considerable efforts have been made since the 1950s to better understand the cellular and molecular mechanisms of action of metformin, a potent antihyperglycaemic agent now recommended as the first-line oral therapy for T2D (Type 2 diabetes). The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory chain complex I. In addition, the resulting decrease in hepatic energy status activates AMPK (AMP-activated protein kinase), a cellular metabolic sensor, providing a generally accepted mechanism for the action of metformin on hepatic gluconeogenesis. The demonstration that respiratory chain complex I, but not AMPK, is the primary target of metformin was recently strengthened by showing that the metabolic effect of the drug is preserved in liver-specific AMPK-deficient mice. Beyond its effect on glucose metabolism, metformin has been reported to restore ovarian function in PCOS (polycystic ovary syndrome), reduce fatty liver, and to lower microvascular and macrovascular complications associated with T2D. Its use has also recently been suggested as an adjuvant treatment for cancer or gestational diabetes and for the prevention in pre-diabetic populations. These emerging new therapeutic areas for metformin will be reviewed together with recent findings from pharmacogenetic studies linking genetic variations to drug response, a promising new step towards personalized medicine in the treatment of T2D. [1]
NADH:quinone oxidoreductase (complex I) pumps protons across the inner membrane of mitochondria or the plasma membrane of many bacteria. Human complex I is involved in numerous pathological conditions and degenerative processes. With 14 central and up to 32 accessory subunits, complex I is among the largest membrane-bound protein assemblies. The peripheral arm of the L-shaped molecule contains flavine mononucleotide and eight or nine iron-sulfur clusters as redox prosthetic groups. Seven of the iron-sulfur clusters form a linear electron transfer chain between flavine and quinone. In most organisms, the seven most hydrophobic subunits forming the core of the membrane arm are encoded by the mitochondrial genome. Most central subunits have evolved from subunits of different hydrogenases and bacterial Na+/H+ antiporters. This evolutionary origin is reflected in three functional modules of complex I. The coupling mechanism of complex I most likely involves semiquinone intermediates that drive proton pumping through redox-linked conformational changes. [2]
NADH:ubiquinone oxidoreductase (complex I) is a major source of reactive oxygen species in mitochondria and a significant contributor to cellular oxidative stress. Here, we describe the kinetic and molecular mechanism of superoxide production by complex I isolated from bovine heart mitochondria and confirm that it produces predominantly superoxide, not hydrogen peroxide. Redox titrations and electron paramagnetic resonance spectroscopy exclude the iron-sulfur clusters and flavin radical as the source of superoxide, and, in the absence of a proton motive force, superoxide formation is not enhanced during turnover. Therefore, superoxide is formed by the transfer of one electron from fully reduced flavin to O2. The resulting flavin radical is unstable, so the remaining electron is probably redistributed to the iron-sulfur centers. The rate of superoxide production is determined by a bimolecular reaction between O2 and reduced flavin in an empty active site. The proportion of the flavin that is thus competent for reaction is set by a preequilibrium, determined by the dissociation constants of NADH and NAD+, and the reduction potentials of the flavin and NAD+. Consequently, the ratio and concentrations of NADH and NAD+ determine the rate of superoxide formation. This result clearly links our mechanism for the isolated enzyme to studies on intact mitochondria, in which superoxide production is enhanced when the NAD+ pool is reduced. Therefore, our mechanism forms a foundation for formulating causative connections between complex I defects and pathological effects. [3]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C21H27N7O14P2
分子量
663.43
精确质量
663.109
元素分析
C, 38.02; H, 4.10; N, 14.78; O, 33.76; P, 9.34
CAS号
53-84-9
相关CAS号
NAD+-13C5 ammonium;NAD+-d4;NAD+-13C5-1;1859096-06-2;NAD+ lithium;64417-72-7; 53-84-9 (free acid); 20111-18-6 (sodium); 58-68-4 (reduced)
PubChem CID
5892
外观&性状
White to off-white solid
熔点
140 - 142ºC
来源
Gut microbial/endogenous metabolite
LogP
-5.72
tPSA
340.71
氢键供体(HBD)数目
7
氢键受体(HBA)数目
18
可旋转键数目(RBC)
11
重原子数目
44
分子复杂度/Complexity
1120
定义原子立体中心数目
8
SMILES
P(=O)(O[H])(OP(=O)([O-])OC([H])([H])[C@]1([H])[C@]([H])([C@]([H])([C@]([H])([N+]2=C([H])C([H])=C([H])C(C(N([H])[H])=O)=C2[H])O1)O[H])O[H])OC([H])([H])[C@]1([H])[C@]([H])([C@]([H])([C@]([H])(N2C([H])=NC3=C(N([H])[H])N=C([H])N=C23)O1)O[H])O[H]
InChi Key
BAWFJGJZGIEFAR-NNYOXOHSSA-N
InChi Code
InChI=1S/C21H27N7O14P2/c22-17-12-19(25-7-24-17)28(8-26-12)21-16(32)14(30)11(41-21)6-39-44(36,37)42-43(34,35)38-5-10-13(29)15(31)20(40-10)27-3-1-2-9(4-27)18(23)33/h1-4,7-8,10-11,13-16,20-21,29-32H,5-6H2,(H5-,22,23,24,25,33,34,35,36,37)/t10-,11-,13-,14-,15-,16-,20-,21-/m1/s1
化学名
1-((2R,3R,4S,5R)-5-((((((((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methoxy)(hydroxy)phosphoryl)oxy)oxidophosphoryl)oxy)methyl)-3,4-dihydroxytetrahydrofuran-2-yl)-3-carbamoylpyridin-1-ium
别名
β-DPNNSC-20272; Nadide; NSC 20272; NSC20272; nadide; coenzyme I; 53-84-9; beta-NAD; Codehydrogenase I; diphosphopyridine nucleotide; Codehydrase I; nicotinamide adenine dinucleotide; beta-NAD; beta NAD; Enzopride Nadida; Codehydrase I; nadide; 53-84-9; NAD+; coenzyme I; beta-NAD; Codehydrogenase I; diphosphopyridine nucleotide; beta-nicotinamide adenine dinucleotide;NAD; NAD+; Nadidum; Nicotinamide; adenine dinucleotide
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
H2O : ~41.67 mg/mL (~62.81 mM)
溶解度 (体内实验)
配方 1 中的溶解度: 100 mg/mL (150.73 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶。 (<60°C).

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.5073 mL 7.5366 mL 15.0732 mL
5 mM 0.3015 mL 1.5073 mL 3.0146 mL
10 mM 0.1507 mL 0.7537 mL 1.5073 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
Nicotinamide Adenine Dinucleotide (NAD+) Metabolism in Human Brown Adipose Tissue
CTID: NCT06627868
Phase: N/A
Status: Not yet recruiting
Date: 2024-10-04
The Safety and Efficacy of Coenzyme I for Injection in Promoting Hematopoietic Recovery of Patients After sUCBT
CTID: NCT06558253
Phase: Phase 1
Status: Recruiting
Date: 2024-08-16
IV Administration of ChromaDex's Niagen® as Compared to NAD+
CTID: NCT06382688
Phase: N/A
Status: Active, not recruiting
Date: 2024-04-24
Small Sample,Unicentric,Randomized, Controlled Clinical Study of Coenzyme I for Injection in the Treatment of Sudden Sensorineural Hearing Loss
CTID: NCT05849519
Phase: Early Phase 1
Status: Unknown status
Date: 2023-05-09
Pilot Study Into LDN and NAD+ for Treatment of Patients With Post-COVID-19 Syndrome
CTID: NCT04604704
Phase: Phase 2
Status: Completed
Date: 2023-01-25
联系我们