P7C3

别名: P7C3;P7 C3; 1-(3,6-Dibromo-carbazol-9-yl)-3-phenylamino-propan-2-ol; 1-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylamino)propan-2-ol; 1-anilino-3-(3,6-dibromocarbazol-9-yl)propan-2-ol; 3,6-Dibromo-alpha-[(phenylamino)methyl]-9H-carbazole-9-ethanol; MFCD00572918; 1-(3,6-dibromocarbazol-9-yl)-3-(phenylamino)propan-2-ol;P 7C3
目录号: V0960 纯度: ≥98%
P7C3 (P-7C3;P7 C-3;P 7C3) 是一种新型、有效的神经原性和神经保护剂,通过靶向 NAMPT(烟酰胺磷酸核糖基转移酶)酶发挥作用。
P7C3 CAS号: 301353-96-8
产品类别: NAMPT
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
1mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of P7C3:

  • P7C3-A20
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
P7C3 (P-7C3; P7 C-3; P 7C3) 是一种新型、有效的前神经原和神经保护剂,通过靶向 NAMPT(烟酰胺磷酸核糖基转移酶)酶发挥作用。 P 7C3 保护新生神经元免遭细胞凋亡,并促进小鼠和大鼠海马齿状回颗粒下区(成年哺乳动物正常神经发生的部位)的神经发生。 P7C3 可口服,无毒,在小鼠、大鼠和细胞培养物中稳定,并且能够穿透血脑屏障。
生物活性&实验参考方法
靶点
Neuroprotective agent; NAMPT
体外研究 (In Vitro)
当暴露于 LPS 时,P7C3 可阻止 BV2 细胞产生促炎因子 [3]。在用 100 ng/mL LPS 处理的 BV2 细胞中,P7C3 显着且剂量依赖性地降低 iNOS 和 COX-2 的蛋白质水平,而不影响细胞活力 [3]。在 BV2 细胞中,P7C3 阻止 LPS 诱导的 NF-κB p65 亚基的核转位 [3]。通过阻止 IκB 激酶 (IKK) 激活,P7C3 可以阻止 LPS 诱导的抑制性 κB α (IκBα) 降解 [3]。
体内研究 (In Vivo)
体内 P7C3(20 mg/kg/d;腹腔注射;每天两次;持续 21 天)可防止小胶质细胞和小胶质细胞激活介导的多巴胺能 (DA) 神经元的损失 [3]。
细胞实验
蛋白质印迹分析[3]
细胞类型: BV2 细胞
测试浓度: 0.1 μM、1 μM、10 μM
孵育时间:2小时
实验结果:降低iNOS、COX-2的蛋白质水平。
动物实验
Animal/Disease Models: 6-8 weeks male C57BL/6 mice (25-30 g)[3]
Doses: 20 mg/kg/d
Route of Administration: intraperitoneal (ip)injection, twice (two times) daily, for 21 days
Experimental Results: Strikingly diminished the expressions of (a microglia marker) and GFAP (an astrocyte marker) LPS-induced in the substantia nigra pars compacta (SNpc).
参考文献

[1]. Discovery of a proneurogenic, neuroprotective chemical. Cell. 2010 Jul 9;142(1):39-51.

[2]. P7C3 and an unbiased approach to drug discovery for neurodegenerative diseases. Chem Soc Rev. 2014 Oct 7;43(19):6716-26.

[3]. P7C3 Inhibits LPS-Induced Microglial Activation to Protect Dopaminergic Neurons Against Inflammatory Factor-Induced Cell Death in vitro and in vivo. Front Cell Neurosci. 2018; 12: 400.

[4]. Blaya MO, Wasserman JM, Pieper AA, Sick TJ, Bramlett HM, Dietrich WD. Neurotherapeutic capacity of P7C3 agents for the treatment of Traumatic Brain Injury. Neuropharmacology. 2019;145(Pt B):268-282.

其他信息
An in vivo screen was performed in search of chemicals capable of enhancing neuron formation in the hippocampus of adult mice. Eight of 1000 small molecules tested enhanced neuron formation in the subgranular zone of the dentate gyrus. Among these was an aminopropyl carbazole, designated P7C3, endowed with favorable pharmacological properties. In vivo studies gave evidence that P7C3 exerts its proneurogenic activity by protecting newborn neurons from apoptosis. Mice missing the gene encoding neuronal PAS domain protein 3 (NPAS3) are devoid of hippocampal neurogenesis and display malformation and electrophysiological dysfunction of the dentate gyrus. Prolonged administration of P7C3 to npas3(-/-) mice corrected these deficits by normalizing levels of apoptosis of newborn hippocampal neurons. Prolonged administration of P7C3 to aged rats also enhanced neurogenesis in the dentate gyrus, impeded neuron death, and preserved cognitive capacity as a function of terminal aging.[1]
A novel neuroprotective small molecule was discovered using a target-agnostic in vivo screen in living mice. This aminopropyl carbazole, named P7C3, is orally bioavailable, crosses the blood-brain barrier, and is non-toxic at doses several fold higher than the efficacious dose. The potency and drug-like properties of P7C3 were optimized through a medicinal chemistry campaign, providing analogues for detailed examination. Improved versions, such as (-)-P7C3-S243 and P7C3-A20, displayed neuroprotective properties in rodent models of Parkinson's disease, amyotrophic lateral sclerosis, traumatic brain injury and age-related cognitive decline. Derivatives appended with immobilizing moieties may reveal the protein targets of the P7C3 class of neuroprotective compounds. Our results indicate that unbiased, in vivo screens might provide starting points for the development of treatments for neurodegenerative diseases as well as tools to study the biology underlying these disorders.[2]
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Although its pathogenesis remains unclear, growing evidencce suggests that microglia-mediated neuroinflammation contributes greatly to the progression of PD. P7C3, an aminopropyl carbazole, possesses significant neuroprotective effects in several neurodegenerative disease animal models, including PD. In this study, we designed to investigate the effects of P7C3 on neuroinflammation. We showed that P7C3 specially suppressed the expression of lipopolysaccharide (LPS)-induced pro-inflammatory factors but not influenced the anti-inflammatory factors in microglia. The inhibition of the nuclear factor κB (NF-κB) signaling pathway was involved in the mechanisms of the anti-inflammatory effects by P7C3. LPS-induced activation of IκB kinase (IKK), degradation of the inhibitory κB alpha (IκBα) and nuclear translocation of NF-κB can be attenuated by the pretreatment of P7C3 in microglia. Furthermore, in LPS-treated microglia, P7C3-pretreatment decreased the toxicity of conditioned media to MES23.5 cells (a dopaminergic (DA) cell line). Most importantly, the anti-inflammatory effects of P7C3 were observed in LPS-stimulated mouse model. In general, our study demonstrates that P7C3 inhibits LPS-induced microglial activation through repressing the NF-κB pathway both in vivo and in vitro, providing a theoretical basis for P7C3 in anti-inflammation.[3]
Traumatic brain injury (TBI) is a significant public health problem around the world. A promising area of research is the characterization of small, drug-like molecules that have potent clinical properties. One pharmacotherapeutic agent in particular, an aminopropyl carbazole called P7C3, was discovered using an in vivo screen to identify new agents that augmented the net magnitude of adult hippocampal neurogenesis. P7C3 greatly enhanced neurogenesis by virtue of increasing survival rates of immature neurons. The potent neuroprotective efficacy of P7C3 is likely due to enhanced nicotinamide phosphoribosyltransferase (NAMPT) activity, which supports critical cellular processes. The scaffold of P7C3 was found to have favorable pharmacokinetic properties, good bioavailability, and was nontoxic. Preclinical studies have shown that administration of the P7C3-series of neuroprotective compounds after TBI can rescue and reverse detrimental cellular events leading to improved functional recovery. In several TBI models and across multiple species, P7C3 and its analogues have produced significant neuroprotection, axonal preservation, robust increases in the net magnitude of adult neurogenesis, protection from injury-induced LTP deficits, and improvement in neurological functioning. This review will elucidate the exciting and diverse therapeutic findings of P7C3 administration in the presence of a complex and multifactorial set of cellular and molecular challenges brought forth by experimental TBI. The clinical potential and broad therapeutic applicability of P7C3 warrants much needed investigation into whether these remedial effects can be replicated in the clinic. P7C3 may serve as an important step forward in the design, understanding, and implementation of pharmacotherapies for treating patients with TBI. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".[4]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C21H18BR2N2O
分子量
474.19
精确质量
471.978
元素分析
C, 53.19; H, 3.83; Br, 33.70; N, 5.91; O, 3.37
CAS号
301353-96-8
相关CAS号
P7C3-A20;1235481-90-9
PubChem CID
2836187
外观&性状
White to off-white solid powder
密度
1.6±0.1 g/cm3
沸点
656.4±55.0 °C at 760 mmHg
闪点
350.8±31.5 °C
蒸汽压
0.0±2.1 mmHg at 25°C
折射率
1.687
LogP
6.6
tPSA
37.19
氢键供体(HBD)数目
2
氢键受体(HBA)数目
2
可旋转键数目(RBC)
5
重原子数目
26
分子复杂度/Complexity
433
定义原子立体中心数目
0
SMILES
BrC1C([H])=C([H])C2=C(C=1[H])C1C([H])=C(C([H])=C([H])C=1N2C([H])([H])C([H])(C([H])([H])N([H])C1C([H])=C([H])C([H])=C([H])C=1[H])O[H])Br
InChi Key
FZHHRERIIVOATI-UHFFFAOYSA-N
InChi Code
InChI=1S/C21H18Br2N2O/c22-14-6-8-20-18(10-14)19-11-15(23)7-9-21(19)25(20)13-17(26)12-24-16-4-2-1-3-5-16/h1-11,17,24,26H,12-13H2
化学名
1-anilino-3-(3,6-dibromocarbazol-9-yl)propan-2-ol
别名
P7C3;P7 C3; 1-(3,6-Dibromo-carbazol-9-yl)-3-phenylamino-propan-2-ol; 1-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylamino)propan-2-ol; 1-anilino-3-(3,6-dibromocarbazol-9-yl)propan-2-ol; 3,6-Dibromo-alpha-[(phenylamino)methyl]-9H-carbazole-9-ethanol; MFCD00572918; 1-(3,6-dibromocarbazol-9-yl)-3-(phenylamino)propan-2-ol;P 7C3
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 95 mg/mL (200.3 mM)
Water:<1 mg/mL
Ethanol: 20 mg/mL (42.2 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.08 mg/mL (4.39 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.08 mg/mL (4.39 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.1089 mL 10.5443 mL 21.0886 mL
5 mM 0.4218 mL 2.1089 mL 4.2177 mL
10 mM 0.2109 mL 1.0544 mL 2.1089 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • P7C3

    Identification of the P7C3 binding protein p70 using the P7C3-S326 photo-crosslinking probe.
    Cell. 2014 Sep 11;158(6):1324-34.
  • P7C3

    Identification of p70 and p55 targets of P7C3 by two-dimensional gel electrophoresis and mass spectrometry. Cell. 2014 Sep 11;158(6):1324-34.
  • P7C3


    P7C3-A20 enhances the flux of nicotinamide through the salvage pathway.
    Cell. 2014 Sep 11;158(6):1324-34.
相关产品
联系我们