2',3'-cGAMP sodium (2'-3'-cyclic GMP-AMP sodium)

别名: 2',3'-cGAMP sodium salt; 2734858-36-5; JX6B238JSL; 2'3'-cGAMP (sodium salt); 2'-3'-cyclic GMP-AMP sodium; PD077435; adenylyl-(3'-->5')-2'-guanylic acid, cyclic nucleotide, disodium salt; 2'3'-CYCLIC GUANOSINE MONOPHOSPHATE-ADENOSINE MONOPHOSPHATE DISODIUM SALT
目录号: V72301 纯度: = 99.66%
2',3'-cGAMP钠(2'-3'-环状GMP-AMP钠)是哺乳动物细胞中的内源性cGAMP。
2',3'-cGAMP sodium (2'-3'-cyclic GMP-AMP sodium) CAS号: 2734858-36-5
产品类别: Endogenous Metabolite
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
1mg
5mg
Other Sizes

Other Forms of 2',3'-cGAMP sodium (2'-3'-cyclic GMP-AMP sodium):

  • 2',3'-cGAMP-d8 ammonium
  • 2',3'-cGAMP
  • 2',3'-cGAMP-C2-PPA
  • 2',3'-cGAMP-C2-SH
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: = 99.66%

产品描述
2',3'-cGAMP钠(2'-3'-环状GMP-AMP钠)是哺乳动物细胞中的内源性cGAMP。 2',3'-cGAMP 钠以高亲和力结合 STING,是干扰素-β (IFNβ) 的有效诱导剂。 2',3'-cGAMP 钠是在哺乳动物细胞中响应细胞质中的 DNA 产生的。
生物活性&实验参考方法
靶点
STING; interferon-β (IFNβ)[1]
体外研究 (In Vitro)
2',3'-cGAMP 钠(2'-3'-环 GMP-AMP 钠)中有两种不同的磷酸二酯连接:一种连接 GMP 的 2'-OH 和 AMP 的 5'-磷酸,另一种连接 3 AMP 的 '-OH 和 GMP(1–2) 的 5'-磷酸。
2’3’-cGAMP是哺乳动物细胞产生的内源性第二信使。 2 ' 3 ' -cGAMP是STING的高亲和力配体。 2 ' 3 ' -cGAMP是一种有效的i型干扰素诱导剂。 2 ' 3 ' -cGAMP结合诱导STING构象变化[1]。
酶活实验
等温滴定量热法(ITC)[1]
等温滴定量热法(ITC)使用VP-ITC微量热计(GE Healthcare)测量STING与cGAMP异构体或c-di-GAMP之间的结合亲和力。蛋白质和配体浓度如图2D所示。滴定在20°C下进行,缓冲液中含有25 mM Hepes, pH 7.8, 150 mM NaCl。注射32次,间隔时间4分钟。通过NITPIC(Keller et al., 2012)对滴定迹线进行积分,然后通过SEDFIT(Houtman et al., 2007)对曲线进行拟合。数据采用GUSSI (http://biophysics.swmed.edu/MBR/software.html)制作。
酶法合成和纯化cGAMP[1]
为了使用cGAS酶生成天然cGAMP,将含有20mM Tris-Cl, pH7.5, 5mM MgCl2, 10mM CoCl2, 0.01mg/ml鲱鱼睾丸DNA, 1mM ATP, 1mM GTP和0.1μM重组sumo标记的人cGAS (aa147-522)的反应在37℃下孵育1hr。混合物在Hitrap Q柱上以0-0.5M NaCl线性梯度进行分馏;收集cGAMP对应的UV峰,并将其上载到C18色谱柱(201TP510, 1cmX25cm)上,用0-100%的线性甲醇梯度洗脱。
细胞实验
内源性cGAMP的制备[1]
分别从DNA转染的L929和THP-1细胞中制备内源性cGAMP。HT-DNA转染4小时后,约3× 10~7个细胞在低渗缓冲液[10mM Tris-HCl, pH7.4, 10mM KCl, 1.5mM MgCl2]中裂解。裂解液在95°C下加热5分钟,在17000 g下再次离心10分钟,去除变性蛋白。耐热上清液在C-18色谱柱(Eclipse Plus 4.6×30 mm, 3.5μm, Agilent Technologies)上分馏,用0.1%甲酸平衡,用0-100%甲醇线性梯度洗脱。通过活性测定法监测各组分中cGAMP的存在(Wu et al., 2013),并使用活性峰值的组分进行进一步的质谱和质谱/质谱分析。
参考文献

[1]. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell. 2013 Jul 25;51(2):226-35.

其他信息
The presence of microbial or self DNA in the cytoplasm of mammalian cells is a danger signal detected by the DNA sensor cyclic-GMP-AMP (cGAMP) synthase (cGAS), which catalyzes the production of cGAMP that in turn serves as a second messenger to activate innate immune responses. Here we show that endogenous cGAMP in mammalian cells contains two distinct phosphodiester linkages, one between 2'-OH of GMP and 5'-phosphate of AMP, and the other between 3'-OH of AMP and 5'-phosphate of GMP. This molecule, termed 2'3'-cGAMP, is unique in that it binds to the adaptor protein STING with a much greater affinity than cGAMP molecules containing other combinations of phosphodiester linkages. The crystal structure of STING bound to 2'3'-cGAMP revealed the structural basis of this high-affinity binding and a ligand-induced conformational change in STING that may underlie its activation.[1]
Although 2′3-cGAMP binds to STING with a much higher affinity than cGAMP isomers containing other phosphodiester linkages, all four cGAMP isomers induced IFNβ with similar EC50 values, which were much lower than that of c-di-GMP. Thus, all cGAMP isoforms are potent inducers of IFNβ, raising the possibility that cGAMP containing distinct phosphodiester linkages might exist in nature, perhaps in some lower organisms. Indeed, Vibrio cholera contains a cyclase that synthesize 3′3′-cGAMP involved in bacterial chemotaxis and colonization (Davieset al., 2012). At present, it is not clear why mammals have evolved to produce 2′3′-cGAMP as the endogenous second messenger to trigger innate immune responses.[1]
In summary, our results demonstrate that 1) the endogenous second messenger produced in mammalian cells in response to cytosolic DNA stimulation is 2′3′-cGAMP; 2) 2′3′-cGAMP is a high affinity ligand for STING; 3) 2′3′-cGAMP is a potent inducer of IFNβ in mammalian cells; 4) 2′3′-cGAMP induces conformational rearrangements in STING that might underlie its activation; and 5) extensive interactions between 2′3′-cGAMP and STING observed in the crystal structure of the complex explains their specific and high affinity binding.[1]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C20H25N10NAO13P2
分子量
698.408995389938
精确质量
718.063
CAS号
2734858-36-5
相关CAS号
2',3'-cGAMP;1441190-66-4
PubChem CID
137120248
外观&性状
White to off-white solid powder
tPSA
331
氢键供体(HBD)数目
5
氢键受体(HBA)数目
19
可旋转键数目(RBC)
2
重原子数目
47
分子复杂度/Complexity
1290
定义原子立体中心数目
8
SMILES
OC1([H])[C@@]2([H])COP(O[C@@]3([H])[C@@H](O)[C@H](N4C=NC5=C(N=CN=C45)N)O[C@]3([H])COP(O)(=O)O[C@@]1([H])[C@H](N1C=NC3C(N=C(N)NC1=3)=O)O2)(O)=O.[NaH]
InChi Key
CNVCOPPPOWRJAV-DQNSRKNCSA-L
InChi Code
InChI=1S/C20H24N10O13P2.2Na/c21-14-8-15(24-3-23-14)29(4-25-8)18-11(32)12-7(41-18)2-39-45(36,37)43-13-10(31)6(1-38-44(34,35)42-12)40-19(13)30-5-26-9-16(30)27-20(22)28-17(9)33;;/h3-7,10-13,18-19,31-32H,1-2H2,(H,34,35)(H,36,37)(H2,21,23,24)(H3,22,27,28,33);;/q;2*+1/p-2/t6-,7-,10-,11-,12-,13-,18-,19-;;/m1../s1
化学名
disodium;2-amino-9-[(1R,6R,8R,9R,10S,15R,17R,18R)-8-(6-aminopurin-9-yl)-9,18-dihydroxy-3,12-dioxido-3,12-dioxo-2,4,7,11,13,16-hexaoxa-3λ5,12λ5-diphosphatricyclo[13.2.1.06,10]octadecan-17-yl]-1H-purin-6-one
别名
2',3'-cGAMP sodium salt; 2734858-36-5; JX6B238JSL; 2'3'-cGAMP (sodium salt); 2'-3'-cyclic GMP-AMP sodium; PD077435; adenylyl-(3'-->5')-2'-guanylic acid, cyclic nucleotide, disodium salt; 2'3'-CYCLIC GUANOSINE MONOPHOSPHATE-ADENOSINE MONOPHOSPHATE DISODIUM SALT
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
H2O: 50 mg/mL (69.60 mM)
DMSO: < 1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: 18.33 mg/mL (25.52 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.4318 mL 7.1591 mL 14.3182 mL
5 mM 0.2864 mL 1.4318 mL 2.8636 mL
10 mM 0.1432 mL 0.7159 mL 1.4318 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们