Propylparaben

别名: NSC-23515; NSC 23515; Propylparaben 羟苯丙酯;对羟基苯甲酸丙酯;尼泊金丙酯;对羟基安息香酸丙酯;对羟基苯甲酸丙酯(尼泊金丙酯);4-羟基苯甲酸丙酯;对羟基苯甲酸正丙酯;對羥苯甲酸丙酯;對羥苄酸丙酯;尼泊金丙酯(标准品);尼泊金丙;4-羟基苯甲酸丙酯[生物学研究用];Propyl 4-Hydroxybenzoate 4-羟基苯甲酸丙酯;Propyl 4-Hydroxybenzoate [for Biochemical Research] 4-羟基苯甲酸丙酯[生物学研究用];对羟基苯甲酸丙脂;对羟基苯甲酸丙酯 Propyl Paraben;对羟基苯甲酸丙酯 标准品;对羟基苯甲酸丙酯溶液标准物质;尼泊金丙酯 EP标准品;尼泊金丙酯(Propylparaben);尼泊金丙酯(对羟基苯甲酸丙酯);尼泊金丙酯,GCS;尼泊金丙酯,Propylparaben;尼泊金丙酯标准品;羟苯丙酯 USP标准品;羟苯丙酯标准品(JP);正丙基-4-羟基苯甲酸酯;4-羟基苯甲酸丙酯对羟苄酸丙酯;对羟苯甲酸丙酯;对羟基苯甲酸丙酯、尼泊金丙酯;分析对照品;尼泊金;尼泊金丙,尼泊金丙酯;对羟苄酸丙酯
目录号: V13276 纯度: ≥98%
对羟基苯甲酸丙酯(对羟基苯甲酸丙酯)是一种可由植物和细菌产生的抗菌防腐剂。
Propylparaben CAS号: 94-13-3
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
1g
5g
Other Sizes

Other Forms of Propylparaben:

点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
对羟基苯甲酸丙酯(对羟基苯甲酸丙酯)是一种可由植物和细菌产生的抗菌防腐剂。对羟基苯甲酸丙酯广泛应用于化妆品、药品和食品中。 Propylparaben 通过改变细胞周期、细胞凋亡和类固醇生成途径来破坏卵泡生长和类固醇生成功能。对羟基苯甲酸丙酯还降低了大鼠的精子数量和活力。
生物活性&实验参考方法
体外研究 (In Vitro)
对羟基苯甲酸丙酯可保护分离的成年大鼠心肌细胞免受缺血再灌注损伤。对羟基苯甲酸丙酯(500 μM;10 分钟)可显着减轻 15 小时再灌注和 45 分钟连续缺血诱导的细胞死亡的影响 [4]。电压门控钠通道被对羟基苯甲酸丙酯(250 μM、500 μM)以浓度和电压依赖性方式可逆阻断 [4]。在成熟的 3T3-L1 白色脂肪细胞中,对羟基苯甲酸丙酯(0-1 μM;48 小时)可抑制基础脂肪分解,包括胰岛素刺激的葡萄糖摄取。然而,它不会改变 2-NBDG 的基本摄入量 [5]。
体内研究 (In Vivo)
在八个月内,用对羟基苯甲酸丙酯(7.5 毫克/公斤/天;口服;治疗八个月)治疗的雌性小鼠在激素水平、卵巢储备和动情周期方面表现出巨大的变化。此外,成年小鼠的卵巢衰老速度加快。根据研究,服用褪黑激素可以阻止对羟基苯甲酸丙酯引起的颗粒细胞类固醇合成障碍[6]。
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Systemic exposure to parabens in the neonatal population, in particular propyl-parabens (PPB), remains a concern. Blood concentrations and kinetics of methyl-parabens (MPB) and PPB were therefore determined in neonates receiving medicines containing these excipients. A multi-center, non-interventional, observational study of excipient-kinetics in neonates. 'Dried Blood Spot' samples were collected opportunistically at the same time as routine samples and the observations modelled using a non-linear mixed effects approach. A total of 841 blood MPB and PPB concentration data were available for evaluation from 181 pre- and term-neonates. Quantifiable blood concentrations of MPB and PPB were observed in 99% and 49% of patients, and 55% and 25% of all concentrations were above limit of detection (10 ng/mL), respectively. Only MPB data was amenable to modelling. Oral bioavailability was influenced by type of formulation and disposition was best described by a two compartment model with clearance (CL) influenced by post natal age (PNA); CL PNA<21 days 0.57 versus CL PNA>21 days 0.88 L/hr. Daily repeated administration of parabens containing medicines can result in prolonged systemic exposure to the parent compound in neonates. Animal toxicology studies of PPB that specifically address the neonatal period are required before a permitted daily exposure for this age group can be established.
By the oral route, parabens are rapidly absorbed, metabolized, and excreted. The metabolic reactions and conversions in mammals vary with the chain length of the ester, the animal species, route of administration, and quantity tested. The metabolism of parabens in humans appears to be most closely related to that of dogs. The rate of metabolite excretion appears to decrease with increasing molecular weight of the ester. /Parabens/
After propyl paraben is intravenously infused into the dog, unhydrolyzed propyl paraben is found only in the brain. In liver, kidney, and muscle, it is immediately hydrolyzed to p-hydroxybenzoic acid. Six hours after oral administration of 1.0 g/kg to dogs, the peak plasma concentration of free and total propyl paraben (205 and 370 ug/cu cm) is reached. After 48 hr, all propyl paraben is eliminated.
Parabens are in widespread use as preservatives in drugs. In the late 1990s, concerns were raised about their capacity to disrupt endocrine function based on in vitro data and in vivo uterotrophic tests. Studies in juvenile male rats provided conflicting results on pospubertal sperm production. In an exploratory pharmacokinetic study, Wistar male rats received a single dose of propylparaben (PP) at 3, 10, 100, or 1000 mg/kg, orally on postnatal day (PND) 31. Plasma PP concentrations were quantifiable up 8 hr after dosing with a mean T max value of 15 min. Distribution was 4.8 L/kg, the plasma elimination half-life was 47 min, and clearance was 4.20 (L/hr)/kg at 10 mg/kg. A sulfoconjugated metabolite was detected. In the juvenile toxicology study, PP was orally administered by gavage to 20 Wistar male rats at doses of 3, 10, 100, or 1000 mg/kg/day in 1% hydroxyethylcellulose for 8 weeks starting on PND21. A first subgroup of 10 males/dose was necropsied immediately after the 8-week exposure period; a second subgroup of 10 males/dose was necropsied after a 26-week washout period. Blood samples were taken from additional satellite animals after dosing on PND21 and PND77 for toxicokinetic analysis. There was no evidence of an effect of PP on the weight of the male reproductive organs, epididymal sperm parameters, hormone levels, or histopathology. The dose of 1000 mg/kg/day was the no-observed adverse effect level, corresponding to a maximum plasma concentration of 12,030 ng/mL and exposure to 47 760 ng x hr/mL (AUC0-8 hr) at the end of the treatment.
For more Absorption, Distribution and Excretion (Complete) data for PROPYLPARABEN (7 total), please visit the HSDB record page.
Metabolism / Metabolites
In mice, rats, rabbits, or dogs, propyl paraben is excreted in the urine as unchanged benzoate, p-hydroxybenzoic acid, p-hydroxyhippuric acid (p-hydroxybenzoylglycine), ester glucuronides, ether glucuronides, or ether sulfates.
By the oral route, parabens are rapidly absorbed, metabolized, and excreted. The metabolic reactions and conversions in mammals vary with the chain length of the ester, the animal species, route of administration, and quantity tested. The metabolism of parabens in humans appears to be most closely related to that of dogs. The rate of metabolite excretion appears to decrease with increasing molecular weight of the ester. /Parabens/
Intravenous (IV) injections at 50 mg/kg methylparaben, ethylparaben, propylparaben, or butylparaben were administered to groups of three or more fasted dogs. Similarly, these compounds were administered orally at a dose of 1.0 g/kg. Blood and urine were analyzed at predetermined intervals. Immediately following IV injection, very little ester remained in the blood. Metabolites were detectable in the blood up to 6 hr postinjection and 24 hr postingestion. Recovery of all esters but butylparaben ranged from 58 to 94% of the administered dose. Absorption was essentially complete. ... Dogs given 50 mg/kg were then killed and the distribution of esters and metabolites to organs was determined. Pure ester was recovered only in the brain, spleen, and pancreas. High concentrations of metabolites were detected in the liver and kidneys. With in vitro assays, it was found that esterases in the liver and kidneys of the dog were extremely efficient in hydrolyzing parabens --- complete hydrolysis after 3 minutes for all parabens except butylparaben, which took 30 to 60 minutes. No accumulation of parabens was observed in the tissues of dogs given orally 1 g/kg/day methylparaben or propylparaben for 1 year. The rate of urinary excretion of esters and metabolites in these dogs increased to such an extent that after 24 hr, 96 % of the dose was excreted in the urine. This is contrasted with dogs given a single dose of paraben in which the 96 % excretion level was not attained until 48 hr.
Propyl-4-hydroxybenzoate has known human metabolites that include (2S,3S,4S,5R)-3,4,5-trihydroxy-6-(4-propoxycarbonylphenoxy)oxane-2-carboxylic acid.
Biological Half-Life
Propylparaben was administered orally to sexually immature rainbow trout every second day for up to 10 days in doses between 7 and 1830 mg/kg/2 days and in the water at 50 and 225 ug/L for 12 days. ... Half lives for propylparaben were 8.6 hr in liver and 1.5 hr in muscle.
毒性/毒理 (Toxicokinetics/TK)
Toxicity Summary
IDENTIFICATION AND USE: Propylparaben is a stable, non-volatile compound used as an antimicrobial preservative in foods, drugs and cosmetics. HUMAN EXPOSURE AND TOXICITY: Sensitization has occurred when medications containing parabens have been applied to damaged or broken skin. Parabens have been implicated in numerous cases of contact sensitivity associated with cutaneous exposure, but high concentrations of 5-15% in patch testing are needed to elicit reaction in susceptible individuals. ANIMAL STUDIES: Acute toxicity studies in animals indicate that propylparaben is relatively non-toxic by both oral and parenteral routes, although it is mildly irritating to the skin. Following chronic administration, no-observed-effect levels (NOEL) as high as 1200-4000 mg/kg have been reported and a no-observed-adverse-effect level (NOAEL) of 5500 mg/kg was reported in the rat. Propylparaben is not carcinogenic, mutagenic or clastogenic. It is not cytogenic in vitro in the absence of carboxyesterase inhibitors. Propylparaben in the diet produced cell proliferation in the forestomach of rats. Propylparaben was noncarcinogenic in a study of transplacental carcinogenesis. In one in vitro study, sperm were not viable at concentrations as low as 3 mg/mL Propylparaben. Propylparaben did affect sperm counts in vivo at all levels from 0.01% to 1.0%. ECOTOXICITY STUDIES: In a rainbow trout Oncorhynchus mykiss test system, increases in average plasma vitellogenin levels were seen at oral exposure to 33 mg propylparaben/kg/2 days; the most sensitive fish responded to 7 mg/kg. Zebrafish exposure to propylparaben at the concentrations of 0.1; 0.4 and 0.9 mg/L elicited statistically significant decline of vitellogenin production.
Interactions
Butylated hydroxyanisole and propylparaben are phenolic preservatives commonly used in food, pharmaceutical and personal care products. Both chemicals have been subjected to extensive toxicological studies, due to the growing concern regarding their possible impacts on environmental and human health. However, the cytotoxicity and underlying mechanisms of co-exposure to these compounds have not been explored. In this study, a set of relevant cytotoxicity endpoints including cell viability and proliferation, oxidative stress, DNA damage and gene expression changes were analyzed to assess whether the antioxidant butylated hydroxyanisole could prevent the pro-oxidant effects caused by propylparaben in Vero cells. We demonstrated that binary mixtures of both chemicals induce greater cytotoxic effects than those reported after single exposureto each compound. Simultaneous treatment with butylated hydroxyanisole and propylparaben caused G0/G1 cell cycle arrest as a result of enhanced generation of oxidative stress and DNA double strand breaks. DNA microarray analysis revealed that a cross-talk between transforming growth factor beta (TGFbeta) and ataxia-telangiectasia mutated kinase (ATM) pathways regulates the response of Vero cells to the tested compounds in binary mixture. Our findings indicate that butylated hydroxyanisole potentiates the pro-oxidant effects of propylparaben in cultured mammalian cells and provide useful information for their safety assessment.
Endocrine-disrupting compounds can interfere with the endocrine organs or hormone system and cause tumors, birth defects and developmental disorders in humans. The estrogen-like activity of compounds has been widely studied but little is known concerning their possible modulation of the glucocorticoid receptor. Steroidal (synthetic and natural) and non-steroidal endocrine-active compounds commonly occur as complex mixtures in human environments. Identification of such molecular species, which are responsible for modulating the glucocorticoid receptor are necessary to fully assess their risk. We have used the MDA-kb2 cell line, which expresses endogenous glucocorticoid receptor and a stably transfected luciferase reporter gene construct, to quantify the glucocorticoid-like activity of four compounds present in products in everyday use -propylparaben (PP), butylparaben (BP), diethylhexyl phthalate (DEHP) and tetramethrin (TM). We tested all possible combinations of these compounds at two concentrations (1 uM and 10 nM) and compared their glucocorticoid-like activity. At the concentration of 1 uM seven mixtures were identified to have glucocorticoid-like activity except: DEHP+TM, BP+TM, DEHP+PP+TM, BP+PP+TM. At the concentration of 10 nM only three mixtures have glucocorticoid modulatory activity: DEHP+PP, BP+PP, DEHP+BP+PP+TM. Identified glucocorticoid-like activities were between 1.25 and 1.51 fold at the concentration of 1 uM and between 1.23 and 1.44 fold at the concentration of 10 nM in comparison with the solvent control. Individually BP, PP, and DEHP had glucocorticoid-like activity of 1.60, 1.57 and 1.50 fold over the solvent control at the concentration of 1 uM. On the other hand PP and DEHP, at the concentration of 10nM, showed no glucocorticoid-like activity, while BP showed 1.44 fold. The assertion that individual glucocorticoid-like compounds do not produce harm because they are present at low, ineffective levels in humans may be irrelevant when we include mixed exposures. This study emphasizes that risk assessment of compounds should take mixture effects into account.
... Evidence that the antimicrobial effects of the parabens and sodium benzoate are additive. /Parabens/
Non-Human Toxicity Values
LD50 Mouse oral 6.0 g/kg /From table/
LD50 Mouse oral >8000 mg/kg
LD50 Mouse ip 640 mg/kg
LD50 Mouse ip 0.4 g/kg /From table/
For more Non-Human Toxicity Values (Complete) data for PROPYLPARABEN (7 total), please visit the HSDB record page.
参考文献
[1]. Gal A, et, al. Propylparaben inhibits mouse cultured antral follicle growth, alters steroidogenesis, and upregulates levels of cell-cycle and apoptosis regulators. Reprod Toxicol. 2019 Oct;89:100-106.
[2]. Final amended report on the safety assessment of Methylparaben, Ethylparaben, Propylparaben, Isopropylparaben, Butylparaben, Isobutylparaben, and Benzylparaben as used in cosmetic products. Int J Toxicol. 2008;27 Suppl 4:1-82.
[3]. S Oishi, et al. Effects of propyl paraben on the male reproductive system. Food Chem Toxicol. 2002 Dec;40(12):1807-13.
其他信息
Propyl-4-hydroxybenzoate appears as colorless crystals or white powder or chunky white solid. Melting point 95-98 °C. Odorless or faint aromatic odor. Low toxicity, Tasteless (numbs the tongue). pH: 6.5-7.0 (slightly acidic) in solution.
Propylparaben is the benzoate ester that is the propyl ester of 4-hydroxybenzoic acid. Preservative typically found in many water-based cosmetics, such as creams, lotions, shampoos and bath products. Also used as a food additive. It has a role as an antifungal agent and an antimicrobial agent. It is a benzoate ester, a member of phenols and a paraben. It is functionally related to a propan-1-ol and a 4-hydroxybenzoic acid.
Propylparaben is used in allergenic testing.
Propylparaben is a Standardized Chemical Allergen. The physiologic effect of propylparaben is by means of Increased Histamine Release, and Cell-mediated Immunity.
Propylparaben has been reported in Anastatica hierochuntica, Stocksia brahuica, and other organisms with data available.
Propylparaben is an antimicrobial agent, preservative, flavouring agent. Propylparaben belongs to the family of Hydroxybenzoic Acid Derivatives. These are compounds containing an hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxylic acid.
Drug Indication
Propylparaben is used in allergenic testing.
Mechanism of Action
...The mechanism of propyl paraben may be linked to mitochondrial failure dependent on induction of membrane permeability transition accompanied by the mitochondrial depolarization and depletion of cellular ATP through uncoupling of oxidative phosphorylation...
Therapeutic Uses
/EXPTL THER/ /The authors/ studied the prophylactic effect of propylparaben on alveolitis sicca dolorosa (ASD). Each of 45 patients received three tablets containing 33 mg Propylparaben or a placebo in the socket immediately after removal of a mandibular third molar. None of the patients receiving propylparaben developed ASD, whereas 24 percent of the placebo group did. The prophylatic effect of propylparaben was highly significant, and no side effects to treatment were reported.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C10H12O3
分子量
180.2
精确质量
180.078
CAS号
94-13-3
相关CAS号
Propylparaben-d7;1246820-92-7;Propylparaben-d4;1219802-67-1;Propylparaben sodium;35285-69-9
PubChem CID
7175
外观&性状
White to off-white solid powder
密度
1.1±0.1 g/cm3
沸点
294.3±13.0 °C at 760 mmHg
熔点
95-98 °C(lit.)
闪点
124.6±12.6 °C
蒸汽压
0.0±0.6 mmHg at 25°C
折射率
1.532
LogP
2.93
tPSA
46.53
氢键供体(HBD)数目
1
氢键受体(HBA)数目
3
可旋转键数目(RBC)
4
重原子数目
13
分子复杂度/Complexity
160
定义原子立体中心数目
0
InChi Key
QELSKZZBTMNZEB-UHFFFAOYSA-N
InChi Code
InChI=1S/C10H12O3/c1-2-7-13-10(12)8-3-5-9(11)6-4-8/h3-6,11H,2,7H2,1H3
化学名
propyl 4-hydroxybenzoate
别名
NSC-23515; NSC 23515; Propylparaben
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ~125 mg/mL (~693.67 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.08 mg/mL (11.54 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.08 mg/mL (11.54 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.08 mg/mL (11.54 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 5.5494 mL 27.7469 mL 55.4939 mL
5 mM 1.1099 mL 5.5494 mL 11.0988 mL
10 mM 0.5549 mL 2.7747 mL 5.5494 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们