Adezmapimod (SB203580; RWJ-64809)

别名: RWJ 64809; PB 203580; Adezmapimod; 4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole; 4-[4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-1H-imidazol-5-yl]pyridine; 4-(4-(4-fluorophenyl)-2-(4-(methylsulfinyl)phenyl)-1H-imidazol-5-yl)pyridine; RWJ64809; SB203580; SB203580; SB 203580; RWJ-64809; PB-203580; PB203580 4-(4-氟苯基)-2-(4-甲基亚磺酰基苯基)-5-(4-吡啶基)-1H-咪唑; 4-[5-(4-氟苯基)-2-[4-(甲基磺酰基)苯基]-1H-咪唑-4-基]-吡啶; SB 203580氢氯化物; SB-203580 ;4-(4-(4-氟苯基)-2-(4-(甲基苯亚磺酰基)-苯基)-1H-咪唑基-5-基)吡啶
目录号: V0476 纯度: ≥98%
Adezmapimod (SB-203580; RWJ-64809; SB203580; RWJ64809) 是一种新型有效的 p38 丝裂原激活蛋白激酶抑制剂(p38MAPK 抑制剂),具有治疗系统性红斑狼疮 (SLE) 的潜力。
Adezmapimod (SB203580; RWJ-64809) CAS号: 152121-47-6
产品类别: p38 MAPK
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
1g
2g
Other Sizes

Other Forms of Adezmapimod (SB203580; RWJ-64809):

  • 阿德兹马皮莫德盐酸盐
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
Adezmapimod (SB-203580; RWJ-64809; SB203580; RWJ 64809) 是一种新型有效的 p38 丝裂原激活蛋白激酶抑制剂(p38MAPK 抑制剂),具有治疗系统性红斑狼疮 (SLE) 的潜力。在 THP-1 细胞中,它阻断 PKB 磷酸化,IC50 为 3-5 μM,抑制 p38MAPK,IC50 为 0.3-0.5 μM,其效力比 SAPK3(106T) 和 SAPK4(106T) 低 10 倍。通过减少小鼠模型中的促炎细胞因子和蛋白水解因子,SB203580 抑制子宫内膜异位症的生长。 SB203580 的 Ki 值为 21 nM,是 p38MAPK 的竞争性 ATP 位点抑制剂,其选择性可能受到 ATP 结合袋内或附近的非保守区域的影响。
生物活性&实验参考方法
靶点
p38 (IC50 = 50 nM); p38β2 (IC50 = 500 nM)
体外研究 (In Vitro)
SB203580 的 IC50 为 3-5 μm,当 IL-2 存在时,可抑制小鼠 CT6 T 细胞、BAF F7 B 细胞或原代人 T 细胞的增殖。虽然所需浓度稍高且 IC50 高于 10 μm,但 SB203580 也能抑制 IL-2 诱导的 p70S6 激酶激活。 SB203580 的 IC50 在 3-10 μm 范围内,还以剂量依赖性方式抑制 PDK1 的活性。 [1] SB203580 阻断 p38-MAPK 对 MAPKAPK2 的刺激的 IC50 约为 0.07 μm,而阻断总 SAPK/JNK 活性的 IC50 为 3-10 μm。较高浓度的 SB203580 会导致 ERK 通路被激活,从而提高 NF-κB 的转录活性。[2] SB203580 诱导人肝细胞癌细胞 (HCC) 发生自噬。[3]
体内研究 (In Vivo)
SB203580 在体内模型中保护猪心肌免受缺血性损伤。[4] SB203580 可有效预防和治疗 MRL/lpr 小鼠的系统性红斑狼疮 (SLE)。[5]
SB203580治疗的MRL/lpr小鼠可预防蛋白尿。[5]
SB203580对MRL/lpr小鼠的ALT和AST没有影响。[5]
SB203580治疗的MRL/lpr小鼠的BUN降低,但Cr没有降低。 SB203580治疗的MRL/lpr小鼠的肾脏重量减少,但脾脏重量没有减少。[5]
SB203580治疗的MRL/lpr小鼠的肾脏病理变化减弱。[5]
SB203580治疗的MRL/lpr小鼠的肝脏病理变化得到缓解。[5]
SB203580治疗的MRL/lpr小鼠的脾脏病理变化得到缓解。[5]
SB203580治疗的MRL/lpr小鼠肾小球IgG、IgM、IgA和C3沉积减少。[5]
酶活实验
细胞受体激酶磷酸化测定:将 4μg 羊抗 PKBα 固定在 25 μL Protein G-Sepharose 上过夜(或 1.5 小时),并用 Buffer A(50 mm Tris,pH 7.5,1 mm EDTA,1 mm EGTA,0.5 mm Na3VO4、0.1% β-巯基乙醇、1% Triton X-100、50 mm 氟化钠、5 mm 焦磷酸钠、0.1 mm 苯甲基磺酰氟、1 μg/mL 抑肽酶、胃酶抑素、亮肽素和 1 μm 微囊藻毒素)。然后将固定化的抗 PKB 与 0.5 ml 裂解液(来自 5 × 106 个细胞)一起孵育 1.5 小时,在补充有 0.5 m NaCl 的 0.5 mL 缓冲液 A 中洗涤五次,在 0.5 mL 缓冲液 B(50 mm)中洗涤两次。 Tris-HCl,pH 7.5,0.03% (w/v) Brij-35,0.1 mm EGTA 和 0.1% β-巯基乙醇),并用 100 μl 测定稀释缓冲液两次; 5× 测定稀释缓冲液为 100 mm MOPS,pH 7.2,125 mm β-甘油磷酸盐,25 mm EGTA,5 mm 原钒酸钠,5 mm DTT。 PKB 酶免疫复合物补充有 10 μL 测定稀释缓冲液、40 μm 蛋白激酶 A 抑制肽、100 μm PKB 特异性底物肽和 10 μCi 的 [γ-32P]ATP。室温下振荡反应 20 分钟,然后脉冲旋转样品,将 40 μL 反应体积转移至另一管中,加入 20 μL 40% 三氯乙酸终止反应。混合并在室温下孵育 5 分钟后,将 40 μL 混合物转移到 P81 磷酸纤维素纸上并结合 30 秒。 P81片在0.75%磷酸中清洗3次后,在室温下用丙酮清洗。然后使用闪烁计数对 γ-32P 的掺入进行定量。
细胞实验
为了使 CT6 细胞和 BA/F3 F7 细胞静息,将它们在 RPMI 中洗涤 3 次,并在含有 5% 胎牛血清的 RPMI 中培养过夜,不添加生长因子、抗生素或 β-巯基乙醇。使用 SB203580 或载体对照在 2 mL RPMI、5% 胎牛血清和 2–5 × 106 个静息 CT6 细胞上进行预孵育,如图图例所示。然后,用 20 ng/ml 重组人 IL-2 在 37°C 下刺激细胞 5 分钟,在微型离心机中沉淀 30 秒,吸出培养基,并在适当的缓冲液中裂解沉淀。 BA/F3 细胞维持在含有谷氨酰胺的 RPMI 中,另外补充有 5% 胎牛血清和 0.2 μg/mL G418,并稳定表达 IL-2 受体 β 链的缺失突变体。然后彻底清洗细胞,静置过夜,然后再次清洗,然后用 IL-2 激活。此类细胞制剂含有 >90% T 细胞。在细胞增殖测定中测量[3H]胸苷的掺入。
动物实验
Systemic lupus erythematosus (SLE) are established in female MRL/lpr mice and female C57BL/6 mice
0.1 M/day
Orally administered
Female MRL/lpr mice were randomized into two groups (n = 10 per group) and were fed control diet (named as group 2 in the following) or diet with SB203580 (named as group 3 in the following) starting at the age of 14 weeks and continuing for up to 22 weeks. Adezmapimod (SB203580) was dissolved in drinking water (250 μmol/L), was orally administered (0.4 ml/day). Ten C57BL/6 female mice were used as negative controls (named as group 1 in the following). Two mice in MRL/lpr group 2 were dead at 16 weeks and 18 weeks of age respectively. Two mice in MRL/lpr group 3 were dead at 19 weeks of age. Significant increase of urine protein (300–2000 mg/dl) was found in each mouse before death, indicating a probable renal failure be the cause of death. Ultimately, 10 mice in group 1, 8 mice in group 2 and group 3 were included in statistical analysis.[5]
Systemic lupus erythematosus (SLE) is an autoimmune disease accompanying excessive inflammatory responses in a wide range of organs. Abnormal activation of p38 MAPK has been postulated to contribute to the inflammation of SLE, leading to progressive tissue and organ damages to develop lupus nephritis and autoimmune hepatitis. In order to determine whether p38 MAPK inhibitor is effective in mouse model of SLE, a specific inhibitor of p38 MAPK Adezmapimod (SB203580) was orally administrated to MRL/lpr mice aged from 14 to 22 weeks. Renal and hepatic functions, as well as pathologic changes of important organs including kidney, liver and spleen of MRL/lpr mice were evaluated. As a result, we showed that SB203580 improved renal function by decreasing the levels of proteinuria and serum BUN, ameliorating the pathologic changes of kidney and reducing Ig and C(3) depositions in the kidney. Hepatocytes necrosis, recruitment and proliferation of leucocytes in liver and spleen were found to be inhibited by administration of SB203580. Therefore, p38 MAPK activation may be partially responsible for escalating autoimmune renal, hepatic and splenic destruction, and its inhibitor may lighten the autoimmune attack in these important organs and improve renal function. Our study reveals that the selective blockade of p38 MAPK is effective to prevent and treat the disease in this model of SLE.[5]
参考文献

[1]. J Biol Chem . 2000 Mar 10;275(10):7395-402.

[2]. Br J Pharmacol . 2000 Sep;131(1):99-107.

[3]. ACS Med Chem Lett . 2017 Feb 8;8(3):316-320.

[4]. J Cardiovasc Pharmacol . 2000 Mar;35(3):474-83.

[5]. Int Immunopharmacol . 2011 Sep;11(9):1319-26.

其他信息
SB 203580 is a member of the class of imidazoles carrying 4-methylsulfinylphenyl, 4-pyridyl and 4-fluorophenyl substituents at positions 2, 4 and 5 respectively. An inhibitor of mitogen-activated protein kinase. It has a role as an EC 2.7.11.24 (mitogen-activated protein kinase) inhibitor, a Hsp90 inhibitor, a neuroprotective agent, an EC 2.7.11.1 (non-specific serine/threonine protein kinase) inhibitor and a geroprotector. It is a member of imidazoles, a member of monofluorobenzenes, a member of pyridines and a sulfoxide.
4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole has been reported in Annulohypoxylon truncatum, Eleutherococcus divaricatus, and other organisms with data available.
Pyridinyl imidazole inhibitors, particularly SB203580, have been widely used to elucidate the roles of p38 mitogen-activated protein (MAP) kinase (p38/HOG/SAPKII) in a wide array of biological systems. Studies by this group and others have shown that SB203580 can have antiproliferative activity on cytokine-activated lymphocytes. However, we recently reported that the antiproliferative effects of SB203580 were unrelated to p38 MAP kinase activity. This present study now shows that SB203580 can inhibit the key cell cycle event of retinoblastoma protein phosphorylation in interleukin-2-stimulated T cells. Studies on the proximal regulator of this event, the phosphatidylinositol 3-kinase/protein kinase B (PKB)(Akt/Rac) kinase pathway, showed that SB203580 blocked the phosphorylation and activation of PKB by inhibiting the PKB kinase, phosphoinositide-dependent protein kinase 1. The concentrations of SB203580 required to block PKB phosphorylation (IC(50) 3-5 microM) are only approximately 10-fold higher than those required to inhibit p38 MAP kinase (IC(50) 0.3-0.5 microM). These data define a new activity for this drug and would suggest that extreme caution should be taken when interpreting data where SB203580 has been used at concentrations above 1-2 microM.[1]
In the present study we investigated a possible role for the p38 mitogen-activated protein (MAP) kinase pathway in mediating nuclear factor-kappa B (NF-kappaB) transcriptional activity in the erythroleukaemic cell line TF-1. TF-1 cells stimulated with the phosphatase inhibitor okadaic acid (OA) demonstrated enhanced NF-kappaB and GAL4p65-regulated transcriptional activity which was associated with elevated p38 phosphorylation. However, pretreatment with the p38 MAPK specific inhibitor SB203580 (1 microM) or overexpression of kinase-deficient mutants of MKK3 or MKK6 did not affect OA-enhanced NF-kappaB transcriptional potency, as determined in transient transfection assays. In fact, 5 and 10 microM SB203580 enhanced rather than inhibited NF-kappaB-mediated promoter activity by 2 fold, which was independent of phosphorylation of the p65 subunit. The SB203580-mediated increase in NF-kappaB transcriptional activity was associated with enhanced phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK), but not p38 kinase. Overexpression of kinase-deficient mutants belonging to the ERK1/2, JNK, and p38 pathways showed that only dominant-negative Raf-1 abrogated SB203580-enhanced NF-kappaB activity. This would implicate the involvement of the ERK1/2 pathway in the enhancing effects of SB203580 on NF-kappaB-mediated gene transcription. This study demonstrates that the p38 MAP kinase pathway is not involved in the OA-induced activation of NF-kappaB. SB203580 at higher concentrations activates the ERK pathway, which subsequently enhances NF-kappaB transcriptional activity.[2]
SB203580 is a well-known inhibitor of p38 mitogen-activated protein kinase (MAPK). However, it can suppress cell proliferation in a p38 MAPK independent manner. The inhibitory mechanism remains unknown. Here, we showed that SB203580 induced autophagy in human hepatocellular carcinoma (HCC) cells. SB203580 increased GFP-LC3-positive cells with GFP-LC3 dots, induced accumulation of autophagosomes, and elevated the levels of microtubule-associated protein light chain 3 and Beclin 1. It stimulated the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and p53, but inhibited the phosphorylation of death-associated protein kinase (DAPK). Inhibition of AMPK, p53, or DAPK attenuated SB203580-induced autophagy. AMPK activation appeared to predate the DAPK signal. The activation of both AMPK and DAPK prompted the phosphorylation of p53 and enhanced Beclin 1 expression. Neither the downregulation of p38 MAPK by its siRNA or chemical inhibitor nor the upregulation of p38 MAPK by p38 MAPK DNA transfection affected B203580-induced autophagy. Collectively, the findings demonstrate a novel function of SB203580 to induce autophagy via activating AMPK and DAPK but independent of p38 MAPK. The induction of autophagy can thus account for the antiproliferative effect of SB203580 in HCC cells.[3]
We report that SB203580 (SB), a specific inhibitor of p38-MAPK, protects pig myocardium against ischemic injury in an in vivo model. SB was applied by local infusion into the subsequently ischemic myocardium for 60 min before a 60-min period of coronary occlusion followed by 60-min reperfusion (index ischemia). Infarct size was reduced from a control value of 69.3 +/- 2.7% to 36.8 +/- 3.7%. When SB was infused systemically for 10 min before index ischemia, infarct size was reduced to 36.1 +/- 5.6%. We measured the content of phosphorylated p38-MAPK after systemic infusion of SB and Krebs-Henseleit buffer (KHB; negative control) and during the subsequent ischemic period using an antibody that reacts specifically with dual-phosphorylated p38-MAPK (Thr180/ Tyr182). Ischemia with and without SB significantly increased phospho-p38-MAPK, with a maximum reached at 20 min but was less at 30 and 45 min under the influence of the inhibitor. The systemic infusion of SB for 10 min before index ischemia did not significantly change the p38-MAPK activities (compared with vehicle, studied by in-gel phosphorylation) < or =20 min of ischemia, but activities were reduced at 30 and 45 min. Measurements of p38-MAPK activities in situations in which SB was present during in-gel phosphorylation showed significant inhibition of p38-MAPK activities. The systemic infusion of SB significantly inhibited the ischemia-induced phosphorylation of nuclear activating transcription factor 2 (ATF-2). Using a specific ATF-2 antibody, we did not observe significant changes in ATF-2 abundance when nuclear fractions from untreated, KHB-, and SB-treated tissues were compared. We investigated also the effect of local and systemic infusion of SB on the cardioprotection induced by ischemic preconditioning (IP). The infusions (local or systemic) of SB before and during the IP protocol did not influence the infarct size reduction mediated by IP. The observed protection of the myocardium against ischemic damage by SB points to the negative role of the p38-MAPK pathway during ischemia.[4]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C21H16FN3OS
分子量
377.43
精确质量
377.099
元素分析
C, 66.83; H, 4.27; F, 5.03; N, 11.13; O, 4.24; S, 8.49
CAS号
152121-47-6
相关CAS号
Adezmapimod hydrochloride;869185-85-3
PubChem CID
176155
外观&性状
White to light yellow solid powder
密度
1.4±0.1 g/cm3
沸点
615.6±55.0 °C at 760 mmHg
熔点
249 - 250ºC
闪点
326.1±31.5 °C
蒸汽压
0.0±1.7 mmHg at 25°C
折射率
1.715
LogP
4.1
tPSA
77.85
氢键供体(HBD)数目
1
氢键受体(HBA)数目
5
可旋转键数目(RBC)
4
重原子数目
27
分子复杂度/Complexity
500
定义原子立体中心数目
0
SMILES
S(C([H])([H])[H])(C1C([H])=C([H])C(=C([H])C=1[H])C1=NC(C2C([H])=C([H])C(=C([H])C=2[H])F)=C(C2C([H])=C([H])N=C([H])C=2[H])N1[H])=O
InChi Key
CDMGBJANTYXAIV-UHFFFAOYSA-N
InChi Code
InChI=1S/C21H16FN3OS/c1-27(26)18-8-4-16(5-9-18)21-24-19(14-2-6-17(22)7-3-14)20(25-21)15-10-12-23-13-11-15/h2-13H,1H3,(H,24,25)
化学名
4-[4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-1H-imidazol-5-yl]pyridine;hydrochloride
别名
RWJ 64809; PB 203580; Adezmapimod; 4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole; 4-[4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-1H-imidazol-5-yl]pyridine; 4-(4-(4-fluorophenyl)-2-(4-(methylsulfinyl)phenyl)-1H-imidazol-5-yl)pyridine; RWJ64809; SB203580; SB203580; SB 203580; RWJ-64809; PB-203580; PB203580
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~43 mg/mL (~113.9 mM)
Water: <1 mg/mL
Ethanol: <1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (6.62 mM) (饱和度未知) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: 2 mg/mL (5.30 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶.
例如,若需制备1 mL的工作液,可将 100 μL 20.0 mg/mL 澄清的 DMSO 储备液加入到400 μL PEG300中,混匀;再向上述溶液中加入50 μL Tween-80,混匀;然后加入450 μL 生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

View More

配方 3 中的溶解度: 2 mg/mL (5.30 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶.
例如,若需制备1 mL的工作液,可将 100 μL 20.0mg/mL澄清的DMSO储备液加入到900μL 20%SBE-β-CD生理盐水中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。


配方 4 中的溶解度: 2 mg/mL (5.30 mM) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶.
例如,若需制备1 mL的工作液,您可以将 100 μL 20.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。

配方 5 中的溶解度: 4% DMSO+30% PEG 300+5% Tween 80+ddH2O: 5mg/mL

配方 6 中的溶解度: 16.67 mg/mL (44.17 mM) in 0.5% CMC-Na/saline water (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.6495 mL 13.2475 mL 26.4950 mL
5 mM 0.5299 mL 2.6495 mL 5.2990 mL
10 mM 0.2649 mL 1.3247 mL 2.6495 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • SB203580

  • SB203580
  • SB203580
相关产品
联系我们