规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
靶点 |
PARP-1 ( IC50 = 144 nM )
|
||
---|---|---|---|
体外研究 (In Vitro) |
体外活性:BMN-673 选择性结合 PARP,并通过碱基切除修复途径阻止 PARP 介导的单链 DNA 断裂的 DNA 修复。这会增强 DNA 链断裂的积累,促进基因组不稳定并最终导致细胞凋亡。 BMN 673 选择性杀死具有 BRCA-1 或 BRCA-2 突变的癌细胞。 BMN 673 在 BRCA-1 突变体(MX-1,IC50 = 0.3 nM)和 BRCA-2 突变细胞(Capan-1,IC50 = 5 nM)中表现出单药细胞毒性。相比之下,在 MRC-5 正常人成纤维细胞和其他具有野生型 BRCA-1 和 BRCA-2 基因的肿瘤细胞系中,BMN 673 的 IC50 范围在 90 nM 至 1.9 μM 之间。在培养的人类癌细胞中,BMN 673 还显着增强替莫唑胺和 SN-38 的细胞毒性功效。脱靶分子筛选未发现此类 PARP 抑制剂具有显着的非特异性活性。激酶测定:对于 PARP 抑制剂 Ki 测定,在 96 孔 FlashPlate 中进行酶测定,最终体积中含有 0.5 U PARP1 酶、0.25x 活化 DNA、0.2 mCi [3H] NAD 和 5 mmol/L 冷 NAD(Sigma) 50 mL 反应缓冲液,含有 10% 甘油 (v/v)、25 mmol/L HEPES、12.5 mmol/L MgCl2、50 mmol/L KCl、1 mmol/L 二硫苏糖醇 (DTT) 和 0.01% NP-40 (v /v),pH 7.6。通过将 NAD 添加到含有或不含抑制剂的 PARP 反应混合物中来引发反应,并在室温下孵育 1 分钟。然后向每孔中加入50微升冰冷的20%三氯乙酸(TCA)以终止反应。将板密封并在室温下再摇动120分钟,然后离心。使用 Top-Count 确定与 FlashPlate 结合的放射性信号。 PARP1 Km 使用 Michaelis-Menten 方程从不同的底物浓度 (1-100 mmol/L NAD) 中确定。根据以下公式从酶抑制曲线计算化合物Ki:Ki 1/4 IC50/[1+(底物)/Km]。 PARP2 酶和化合物 Ki 的 Km 使用相同的测定方案测定,不同之处在于在室温下反应中使用 30 ng PARP2、0.25x 活化 DNA、0.2 mCi [3H] NAD 和 20 mmol/L 冷 NAD 30 分钟。细胞分析:BMN 673 对 11 种 SCLC 细胞系表现出有效的抑制作用(IC50=1.7 至 15 nmol/L),这些细胞系均在临床可达到的范围内。此外,对 BMN673 的敏感性与 DNA 修复蛋白表达和 PI3K 通路活性相关。
|
||
体内研究 (In Vivo) |
在大鼠药代动力学研究中,BMN 673 显示出 >50% 的口服生物利用度和药代动力学特性,可实现每日单次给药。在 MX-1 异种移植肿瘤模型研究中,每日口服 BMN 673 可以剂量依赖性方式显着增强细胞毒性疗法的抗肿瘤作用。
|
||
酶活实验 |
为了确定 PARP 抑制剂 Ki,在 96 孔 FlashPlate 中使用 0.5 U PARP1 酶、0.25x 活化 DNA、0.2 mCi [3H] NAD 和 5 mmol/L 冷 NAD (Sigma) 在最终样品中进行酶测定。 50 mL 反应缓冲液,含有 10% 甘油 (v/v)、25 mmol/L HEPES、12.5 mmol/L MgCl2、50 mmol/L KCl、1 mmol/L 二硫苏糖醇 (DTT) 和 0.01% NP-40 (v/v),pH 7.6。将 NAD 添加到 PARP 反应混合物中(无论有或没有抑制剂)以启动反应,然后在室温下孵育一分钟。然后通过向每个孔中添加50微升冰冷的20%三氯乙酸(TCA)来终止反应。将板密封并在室温下另外摇动120分钟后,进行离心。 Top-Count 用于确定与 FlashPlate 结合的放射性信号。采用 Michaelis-Menten 方程计算不同底物浓度(1 至 100 mmol/L NAD)下的 PARP1 Km。使用公式 Ki 1/4 IC50/[1+(底物)/Km],从酶抑制曲线计算化合物 Ki。使用相同的测定方案,发现了 PARP2 酶的 Km 和化合物 Ki。然而,反应在室温下运行 30 分钟,而不是使用 30 ng PARP2、0.25x 活化 DNA、0.2 mCi [3H] NAD 和 20 mmol/L 冷 NAD。
PARP酶测定[1] 根据制造商的说明,使用Trevigen的PARP检测试剂盒评估测试化合物抑制PARP-1酶活性的能力。采用GraphPad Prism5软件计算IC50值。对于PARP抑制剂Ki的测定,酶分析在96孔FlashPlate上进行,0.5单位PARP1酶,0.25倍活化DNA, 0.2 μCi [3H] NAD和5 μM冷NAD,最终体积为50 μL反应缓冲液,含10%甘油(v/v), 25 mM Hepes, 12.5 mM MgCl2, 50 mM KCl, 1 mM DTT和0.01% NP-40(v/v), pH 7.6。将NAD加入到有或没有抑制剂的PARP反应混合物中,在室温下孵育1分钟,开始反应。然后在每孔中加入50 μL冰凉的20% TCA以停止反应。将板密封并在RT下振荡120分钟,然后离心。使用TopCount测定绑定到FlashPlate的放射性信号。采用Michaelis-Menten方程测定不同底物浓度(1-100 μM NAD)下PARP1 Km。根据酶抑制曲线计算化合物Ki,公式为:Ki = IC50/(1+[底物]/Km)。除30 ng PARP2、0.25x活化DNA、0.2 μCi [3H] NAD和20 μM冷NAD在室温下反应30min外,采用相同的检测方法测定PARP2酶Km和化合物Ki。 Biacore结合试验[1] 我们自制了带有n端6xhis标签的重组人PARP1 (rhPARP1)催化结构域(残基662 - 1011),并使用Biacore T200 (GE Healthcare)进行PARP抑制剂相互作用的结合试验。通过胺偶联法将rhPARP1固定在CM5传感器芯片上。简单地说,首先以10 μL/min的速率注射新鲜制备的50 mM NHS: 200 mM EDC(1:1),以10 μL/min的速度注射7 min,激活CM5芯片的一个流动细胞。然后以10 μL/min的速度将rhPARP1 (100 μg/mL, 10 mM MES pH 6.5)注射到流式细胞上60秒。以10 μL/min注射1M乙醇胺7 min阻断剩余活性偶联位点。固定化缓冲液含有10 mM Hepes pH 7.4, 150 mM NaCl, 0.05%表面活性剂P20, 5 mM MgCl2和0.5 mM TCEP(三(2-羧乙基)膦)。固定水平为~7600 RU。为了测量结合动力学,在芯片表面注射浓度增加的PARP抑制剂(12.5、25、50、100、200 nM),每次注射60秒。最后一次注射后,在运行缓冲液(固定缓冲液+ 1% DMSO)中进行3600秒的解离期。流速为50 μL/min。根据参考流的信号对传感器图进行校正后,使用Biacore T200评估软件ver.1.0计算动力学。 细胞内PAR形成试验[1] 细胞PAR合成试验评估了测试化合物抑制PAR聚合的能力。在96孔微滴板中生长的LoVo人结直肠肿瘤细胞在增加PARP抑制剂浓度的条件下预处理30分钟,然后加入终浓度为50 mM的H2O2。在室温下处理5分钟后,细胞在- 20°C下用预冷甲醇/丙酮(7:3)固定10分钟。固定细胞用抗par单克隆抗体孵育60 min,然后用FITC偶联山羊抗小鼠IgG(稀释1:100)和1 μg/mL DAPI孵育60 min,用DAPI信号归一化FITC信号,用GraphPad Prism计算EC50值。 |
||
细胞实验 |
对十一种 SCLC 细胞系,BMN 673 具有很强的抑制作用(IC50=1.7 至 15 nmol/L),所有这些都在临床可行的范围内。此外,DNA 修复蛋白的表达与 PI3K 通路的活性以及对 BMN673 的敏感性之间存在相关性。
共焦显微镜[1] 细胞接种于6孔板盖盖上,24小时后用不同浓度的奥拉帕尼或Talazoparib (BMN 673; MDV3800) 处理24小时后,将细胞用10%福尔马林(3.7% PFA)固定1小时。用0.2% Triton X-100在PBS中渗透20分钟,用50 μL DNase I(在PBS中稀释1/10)在37℃下处理1小时,然后用IFF (PBS + 1% BSA和2% FBS,过滤灭菌)阻断1小时。盖片与兔抗γ - h2ax原代和小鼠抗rad51原代(均为1:1000,50μL IFF)在4°C下孵育过夜。次日,细胞与抗小鼠Alexafluor 546和抗兔Alexafluor 488(均为1:1000,50μL IFF)共孵育1小时。细胞在含DAPI 1:10.000的PBS中洗涤10分钟,用vectasshield和指甲油贴在玻璃板上。使用徕卡共聚焦显微镜对每个盖盖至少拍摄四张照片,随后对细胞进行计数。每次覆盖至少评估100个细胞,如果每个细胞核有超过5个病灶,则为γ - h2ax阳性。绘制阳性细胞的百分比。 |
||
动物实验 |
|
||
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
After administration of talazoparib 1 mg orally once daily, the mean [% coefficient of variation (CV%)] AUC and maximum observed plasma concentration (Cmax) of talazoparib at steady-state was 208 (37%) ng x hr/mL and 16.4 (32%) ng/mL, respectively. The mean (CV%) steady-state Ctrough was 3.53 (61%) ng/mL. Steady state was reached within two to three weeks of therapy. The Tmax ranges from one to two hours. A high-fat, high-calorie food increased the mean Cmax by 46% and the median Tmax from one to four hours, without affecting the AUC. The major route of elimination is renal excretion. Approximately 68.7% of the total administered radiolabeled dose of talazoparib was recovered in urine, where 54.6% of that dose was in the form of an unchanged drug. About 19.7% of the drug was recovered in feces, with 13.6% of the dose is unchanged. The mean apparent volume of distribution of talazoparib is 420 L. The mean apparent oral clearance is 6.45 L/h. The inter-subject variability is 31%. Metabolism / Metabolites Talazoparib undergoes minimal hepatic metabolism. The metabolic pathways include mono-oxidation, dehydrogenation, cysteine conjugation of mono-desfluoro talazoparib, and glucuronide conjugation. Biological Half-Life The mean terminal plasma half-life (±standard deviation) is 90 (±58) hours in patients with cancer. |
||
毒性/毒理 (Toxicokinetics/TK) |
Hepatotoxicity
Elevations in serum aminotransferase levels are common during talazoparib therapy occurring in 33% of patients, but rising above 5 times the upper limit of the normal range in only 1%. The elevations are generally transient and not associated with symptoms or jaundice. Furthermore, similar rates of aminotransferase elevations were reported in control, comparator arms. Talazoparib has had limited clinical use but has not been linked to instances of acute liver injury with symptoms or jaundice. Because of the limited clinical experience with using talazoparib and other PARP inhibitors, their potential for causing liver injury is not well defined. Likelihood score: E* (unproved but suspected cause of clinically apparent liver injury). Effects During Pregnancy and Lactation ◉ Summary of Use during Lactation No information is available on the clinical use of talazoparib during breastfeeding. Because talazoparib is 74% bound to plasma proteins, the amount in milk is likely to be low. The manufacturer recommends that breastfeeding be discontinued during talazoparib therapy and for one month after the last dose. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Protein Binding _In vitro_, the protein binding of talazoparib is 74% and is independent of talazoparib concentration. |
||
参考文献 | |||
其他信息 |
Talazoparib is an orally available small molecule inhibitor of the DNA repair enzyme poly ADP-ribose polymerase (PARP) which is used as an antineoplastic agent in the treatment of selected cases of breast cancer. Talazoparib is associated with a moderate rate of serum aminotransferase elevations during therapy and is suspected to cause rare instances of clinically apparent acute liver injury.
Talazoparib is an inhibitor of mammalian polyadenosine 5’-diphosphoribose polymerases (PARPs), enzymes responsible for regulating essential cellular functions, such as DNA transcription and DNA repair. Developed by Pfizer, talazoparib was first approved by the FDA in October 2018 and by the EMA in June 2019. It was approved by Health Canada in September 2020. Talazoparib is currently used in the treatment of BRCA-mutated breast cancer and HRR-mutated prostate cancer. Talazoparib is a Poly(ADP-Ribose) Polymerase Inhibitor. The mechanism of action of talazoparib is as a Poly(ADP-Ribose) Polymerase Inhibitor. Talazoparib is an orally available small molecule inhibitor of the DNA repair enzyme poly ADP-ribose polymerase (PARP) which is used as an antineoplastic agent in the treatment of selected cases of breast cancer. Talazoparib is associated with a moderate rate of serum aminotransferase elevations during therapy and is suspected to cause rare instances of clinically apparent acute liver injury. Talazoparib is an orally bioavailable inhibitor of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) with potential antineoplastic activity. Talazoparib selectively binds to PARP and prevents PARP-mediated DNA repair of single strand DNA breaks via the base-excision repair pathway. This enhances the accumulation of DNA strand breaks, promotes genomic instability and eventually leads to apoptosis. PARP catalyzes post-translational ADP-ribosylation of nuclear proteins that signal and recruit other proteins to repair damaged DNA and is activated by single-strand DNA breaks. See also: Talazoparib Tosylate (active moiety of). Drug Indication Talazoparib is indicated for the treatment of adult patients with deleterious or suspected deleterious germline BRCA-mutated (gBRCAm) HER2-negative locally advanced or metastatic breast cancer. This indication is approved by the FDA, EMA, and Health Canada. In the US, talazoparib is also indicated in combination with [enzalutamide] for the treatment of adult patients with HRR gene-mutated metastatic castration-resistant prostate cancer (mCRPC). Talzenna is indicated as monotherapy for the treatment of adult patients with germline BRCA1/2 mutations, who have HER2-negative locally advanced or metastatic breast cancer . Patients should have been previously treated with an anthracycline and/or a taxane in the (neo)adjuvant, locally advanced or metastatic setting unless patients were not suitable for these treatments. Patients with hormone receptor (HR)-positive breast cancer should have been treated with a prior endocrine-based therapy, or be considered unsuitable for endocrine-based therapy. Treatment of Ewing sarcoma Treatment of breast malignant neoplasms, Treatment of prostate malignant neoplasms Mechanism of Action Poly(ADP-ribose) polymerases (PARPs) are multifunctional enzymes involved in essential cellular functions, such as DNA transcription and DNA repair. PARPs recognize and repair DNA single-strand breaks (SSBs) via the base excision repair (BER) pathway. DNA double-strand breaks (DSBs) are repaired via homologous recombination by tumour suppressor proteins encoded by _BRCA1_ and _BRCA2_. Talazoparib is a potent inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. _In vitro_, talazoparib binds to PARP-1 and -2 isoforms with similar affinity. Inhibition of the BER pathway by talazoparib leads to the accumulation of unrepaired SSBs, which leads to the formation of DSBs, which is the most toxic form of DNA damage. While BRCA-dependent homologous recombination can repair DSBs in normal cells, this repair pathway is defective in cells with BRCA1/2 mutations, such as certain tumour cells. Inhibition of PARP in cancer cells with BRCA mutations leads to genomic instability and apoptotic cell death. This end result is also referred to as synthetic lethality, a phenomenon where the combination of two defects - inhibition of PARP activity and loss of DSB repair by HR - that are otherwise benign when alone leads to detrimental results. By inhibiting PARP, talazoparib increases the formation of PARP-DNA complexes resulting in DNA damage, decreased cell proliferation, and apoptosis. |
分子式 |
C19H14F2N6O
|
---|---|
分子量 |
380.35
|
精确质量 |
380.12
|
元素分析 |
C, 60.00; H, 3.71; F, 9.99; N, 22.10; O, 4.21
|
CAS号 |
1207456-00-5
|
相关CAS号 |
1207456-00-5; 1207456-01-6; 1207454-56-5 (racemic); 1373431-65-2
|
PubChem CID |
135742498
|
外观&性状 |
White to off-white solid powder
|
LogP |
1.898
|
tPSA |
91.98
|
氢键供体(HBD)数目 |
2
|
氢键受体(HBA)数目 |
7
|
可旋转键数目(RBC) |
2
|
重原子数目 |
28
|
分子复杂度/Complexity |
654
|
定义原子立体中心数目 |
2
|
SMILES |
CN1C(=NC=N1)[C@H]2[C@@H](NC3=CC(=CC4=C3C2=NNC4=O)F)C5=CC=C(C=C5)F
|
InChi Key |
HWGQMRYQVZSGDQ-HOTGVXAUSA-N
|
InChi Code |
InChI=1S/C19H14F2N6O/c1-27-18(22-8-23-27)15-16(9-2-4-10(20)5-3-9)24-13-7-11(21)6-12-14(13)17(15)25-26-19(12)28/h2-8,15-16,24H,1H3,(H,26,28)/t15-,16-/m0/s1
|
化学名 |
(11R,12S)-7-fluoro-11-(4-fluorophenyl)-12-(2-methyl-1,2,4-triazol-3-yl)-2,3,10-triazatricyclo[7.3.1.05,13]trideca-1,5(13),6,8-tetraen-4-one
|
别名 |
Talazoparib (8R,9S); (8R,9S)-LT-673; BMN 673 racemic; BMN673; BMN-673; LT673; LT 673; LT-673; MDV-3800; MDV 3800; MDV3800; trade name: Talzenna
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (6.57 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (6.57 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.6292 mL | 13.1458 mL | 26.2916 mL | |
5 mM | 0.5258 mL | 2.6292 mL | 5.2583 mL | |
10 mM | 0.2629 mL | 1.3146 mL | 2.6292 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT04173507 | Active Recruiting |
Drug: Talazoparib Drug: Talazoparib Tosylate |
Stage IV Lung Cancer AJCC v8 Stage IVA Lung Cancer AJCC v8 |
SWOG Cancer Research Network | February 14, 2020 | Phase 2 |
NCT04207190 | Active Recruiting |
Drug: Talazoparib Drug: Talazoparib Tosylate |
Recurrent Acute Myeloid Leukemia Refractory Acute Myeloid Leukemia |
Roswell Park Cancer Institute | October 23, 2020 | Phase 1 |
NCT05873192 | Not yet recruiting | Drug: Talazoparib Drug: Degarelix |
Prostate Cancer | M.D. Anderson Cancer Center | September 30, 2023 | Phase 2 |
NCT04693468 | Recruiting | Drug: Talazoparib Tosylate Drug: Crizotinib |
Advanced Malignant Solid Neoplasm Recurrent Malignant Solid Neoplasm |
M.D. Anderson Cancer Center | December 1, 2020 | Phase 1 |
NCT04756765 | Recruiting | Drug: Talazoparib Tosylate | Breast Cancer Advanced Breast Cancer |
Stanford University | February 23, 2023 | Phase 2 |
![]() BMN 673 is a potent PARP inhibitor.Clin Cancer Res.2013 Sep 15;19(18):5003-15. th> |
---|
![]() A, siRNAs targeting homologous recombination genes sensitize to PARP1/2 inhibitors.Clin Cancer Res.2013 Sep 15;19(18):5003-15. td> |
![]() BMN 673 exhibits antitumor activity against a BRCA-mutant tumor model in mice.Clin Cancer Res.2013 Sep 15;19(18):5003-15. td> |
![]() BMN 673 potentiates the effects of DNA-damaging cytotoxic agents.Clin Cancer Res.2013 Sep 15;19(18):5003-15. th> |
---|