Valine

别名: ValineL-Valine NSC-76038 Valina EC 200-773-6 NSC76038NSC 76038 L-缬氨酸;L-2-氨基-3-甲基丁酸;L-2-氨基异舞戊酸;L-穿心排草氨基酸;L-缬氨酸AJI88,USP23,FCCIII,CP2000;2-胺-3-甲基丁酸;纈胺酸;Α-胺異戊酸;異戊胺酸;L-异戊氨酸;L-2-氨基异戊酸;L-Valine L-缬氨酸;L-缬氨酸 USP标准品;L-缬氨酸 标准品;L-缬氨酸(RG);L-缬氨酸(高纯);L-缬氨酸(高纯度);L-缬氨酸,BR;L-缬氨酸,对照品;L-缬胺酸;缬氨酸;缬氨酸 EP标准品
目录号: V9328 纯度: ≥98%
L-缬氨酸(Valine)是一种新型非线性有机材料。
Valine CAS号: 72-18-4
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
50mg
100mg
Other Sizes

Other Forms of Valine:

  • N-Methyl-D-valine
  • (R)-2-((tert-Butoxycarbonyl)(methyl)amino)-3-methylbutanoic acid (Boc-N-methyl-D-valine)
  • N-Acetyl-D-valine
  • D-Valine (D-Valine)
  • D-Valine-d8
  • L-Valine-15N (L-Valine 15N)
  • L-Valine-15N,d8 (L-Valine-15N,d8)
  • L-Valine-13C5,15N,d2 (L-Valine 13C5,15N,d2)
  • L-Valine-13C5,15N (L-Valine 13C5,15N)
  • L-Valine-13C5,15N,d8 (L-Valine 13C5,15N,d8)
  • L-Valine-1-13C (L-Valine 1-13C)
  • L-Valine-1-13C,15N (L-Valine 1-13C,15N)
  • L-Valine-13C5 (L-Valine 13C5)
  • L-Valine-2-13C (L-Valine 2-13C)
  • N-2-(Hydroxyethyl)-L-valine-d4
  • L-Valine-d8 (L-Valine-D8; L-VALINE-2,3,4,4,4,5,5,5-d8)
  • N-(3-Indolylacetyl)-L-valine-d4
  • L-缬氨酸-D1氘代内标
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
L-缬氨酸(Valine)是一种新型非线性有机材料。
生物活性&实验参考方法
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Absorbed from the small intestine by a sodium-dependent active-transport process.
Blood and tissue concentrations of branched chain amino acids (BCAA) are altered by several disease and abnormal physiological states, including diabetes mellitus, liver dysfunction, starvation, protein-calorie malnutrition, alcoholism, and obesity. These and other conditions sometimes produce drastic alterations in plasma pools of BCAA. /Amino acids/
Although the free amino acids dissolved in the body fluids are only a very small proportion of the body's total mass of amino acids, they are very important for the nutritional and metabolic control of the body's proteins. ... Although the plasma compartment is most easily sampled, the concentration of most amino acids is higher in tissue intracellular pools. Typically, large neutral amino acids, such as leucine and phenylalanine, are essentially in equilibrium with the plasma. Others, notably glutamine, glutamic acid, and glycine, are 10- to 50-fold more concentrated in the intracellular pool. Dietary variations or pathological conditions can result in substantial changes in the concentrations of the individual free amino acids in both the plasma and tissue pools.
After ingestion, proteins are denatured by the acid in the stomach, where they are also cleaved into smaller peptides by the enzyme pepsin, which is activated by the increase in stomach acidity that occurs on feeding. The proteins and peptides then pass into the small intestine, where the peptide bonds are hydrolyzed by a variety of enzymes. These bond-specific enzymes originate in the pancreas and include trypsin, chymotrypsins, elastase, and carboxypeptidases. The resultant mixture of free amino acids and small peptides is then transported into the mucosal cells by a number of carrier systems for specific amino acids and for di- and tri-peptides, each specific for a limited range of peptide substrates. After intracellular hydrolysis of the absorbed peptides, the free amino acids are then secreted into the portal blood by other specific carrier systems in the mucosal cell or are further metabolized within the cell itself. Absorbed amino acids pass into the liver, where a portion of the amino acids are taken up and used; the remainder pass through into the systemic circulation and are utilized by the peripheral tissues. /Amino acids/
Protein secretion into the intestine continues even under conditions of protein-free feeding, and fecal nitrogen losses (ie, nitrogen lost as bacteria in the feces) may account for 25 percent of the obligatory loss of nitrogen. Under this dietary circumstance, the amino acids secreted into the intestine as components of proteolytic enzymes and from sloughed mucosal cells are the only sources of amino acids for the maintenance of the intestinal bacterial biomass. ... Other routes of loss of intact amino acids are via the urine and through skin and hair loss. These losses are small by comparison with those described above, but nonetheless may have a significant impact on estimates of requirements, especially in disease states. /Amino acids/
For more Absorption, Distribution and Excretion (Complete) data for L-Valine (8 total), please visit the HSDB record page.
Metabolism / Metabolites
Hepatic
The branched-chain amino acids (BCAA) -- leucine, isoleucine, and valine -- differ from most other indispensable amino acids in that the enzymes initially responsible for their catabolism are found primarily in extrahepatic tissues. Each undergoes reversible transamination, catalyzed by a branched-chain aminotransferase (BCAT), and yields alpha-ketoisocaproate (KIC, from leucine), alpha-keto-beta-methylvalerate (KMV, from isoleucine), and alpha-ketoisovalerate (KIV, from valine). Each of these ketoacids then undergoes an irreversible, oxidative decarboxylation, catalyzed by a branchedchain ketoacid dehydrogenase (BCKAD). The latter is a multienzyme system located in mitochondrial membranes. The products of these oxidation reactions undergo further transformations to yield acetyl CoA, propionyl CoA, acetoacetate, and succinyl CoA; the BCAA are thus keto- and glucogenic.
Once the amino acid deamination products enter the tricarboxylic acid (TCA) cycle (also known as the citric acid cycle or Krebs cycle) or the glycolytic pathway, their carbon skeletons are also available for use in biosynthetic pathways, particularly for glucose and fat. Whether glucose or fat is formed from the carbon skeleton of an amino acid depends on its point of entry into these two pathways. If they enter as acetyl-CoA, then only fat or ketone bodies can be formed. The carbon skeletons of other amino acids can, however, enter the pathways in such a way that their carbons can be used for gluconeogenesis. This is the basis for the classical nutritional description of amino acids as either ketogenic or glucogenic (ie, able to give rise to either ketones [or fat] or glucose). Some amino acids produce both products upon degradation and so are considered both ketogenic and glucogenic. /Amino acids/
... An NMR analysis was performed to identify the (13)C-labeled metabolites that are generated by astroglia-rich primary cultures (APC) during catabolism of U-(13)C-valine and that are subsequently released into the incubation medium. The results presented show that APC (1) are potently disposing of the valine contained in the incubation medium; (2) are capable of degrading valine to the tricarboxylic acid (TCA) cycle member succinyl-CoA; and (3) release into the extracellular milieu valine catabolites and compounds generated from them such as U-(13)C-2-oxoisovalerate, U-(13)C-3-hydroxyisobutyrate, U-(13)C-2-methylmalonate, [U-(13)C]isobutyrate, and [U-(13)C]propionate as well as several TCA cycle-dependent metabolites including lactate.
... Metabolism of branched-chain amino acids (BCAAs) was investigated in cultured cerebellar astrocytes in a superfusion paradigm employing (15)N-labeled leucine, isoleucine, or valine. Some cultures were exposed to pulses of glutamate (50 uM; 10 sec every 2 min; 75 min in total) to mimic conditions during glutamatergic synaptic activity ... Incorporation of (15)N into intracellular glutamate from (15)N-leucine, (15)N-isoleucine, or (15)N-valine amounted to about 40-50% and differed only slightly among the individual BCAAs. Interestingly, label (%) in glutamate from (15)N-valine was not decreased upon exposure to exogenous glutamate, which was in contrast to a marked decrease in labeling (%) from (15)N-leucine or (15)N-isoleucine. This suggests an up-regulation of transamination involving only valine during repetitive exposure to glutamate. It is suggested that valine in particular might have an important function as an amino acid translocated between neuronal and astrocytic compartments, a function that might be up-regulated during synaptic activity.
The activities of key enzymes in the valine catabolic pathway - branched-chain aminotransferase, branched-chain alpha-keto acid dehydrogenase complex, methacrylyl (MC)-coenzyme A (CoA) hydratase (crotonase), and 3-hydroxyisobutyryl-CoA (HIB-CoA) hydrolase - were measured in normal and cirrhotic human livers. Unlike rat liver, which does not contain branched-chain aminotransferase, the aminotransferase activity in the normal liver was measurable and is increased somewhat in cirrhosis of the human liver. The total activity of branched-chain alpha-keto acid dehydrogenase complex in the normal human liver was approximately 1% of that in rat liver, and 20% to 30% of the complex was in the active form in both normal and cirrhotic livers. Only the actual activity of the enzyme was significantly decreased by cirrhosis. These results suggest that human liver is less active than rat liver in the catabolism of branched-chain amino and alpha-keto acids. Activities of MC-CoA hydratase and HIB-CoA hydrolase in human liver were very high compared with that of branched-chain alpha-keto acid dehydrogenase complex, suggesting an important role for these enzymes in catabolism of a potentially toxic compound, MC-CoA, formed as an intermediate in the catabolism of valine and isobutyrate. Cirrhosis resulted in a significant decrease in HIB-CoA hydrolase activity but had no effect on the citrate synthase activity, suggesting that the decrease in HIB-CoA hydrolase activity does not reflect a general decrease in mitochondria but that it may contribute to cellular damage that culminates in liver failure.
Hepatic
毒性/毒理 (Toxicokinetics/TK)
Toxicity Summary
(Applies to Valine, Leucine and Isoleucine)
This group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates.
The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic.
There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological problems are due to poor formation of myelin in the CNS.
Interactions
... High dietary levels of leucine suppressed the growth of rats fed a low protein diet, and the growth suppression could be prevented by supplementation with isoleucine and valine.
It has been well established that the branched chain amino acids (BCAA) compete with other large neutral amino acids (LNAA, particularly tryptophan and tyrosine) for membrane transport. Although the BCAA do not act as direct precursors for neurotransmitters, they can affect transport of certain LNAA across the blood-brain barrier, and thereby influence central nervous system concentrations of certain neurotransmitters.
Alterations of motor behavioral patterns and monoamine contents in the discrete /male Wistar/ rat brain areas after acute paraquat exposure (3, 5, 10, 20 mg/kg, sc) ... showed that paraquat at the doses of 5, 10, and 20 mg/kg significantly reduced locomotive, stereotypic, and rotational behaviors. Significant decreases of norepinephrine (NE) contents in cortex and hypothalamus, as well as striatal contents of dopamine (DA) and its acidic metabolites, were detected ... L-valine (200 mg/kg, ip) significantly attenuated paraquat-induced toxicity at moderate dose (5 mg/kg) but not at high dose (20 mg/kg)...
Non-Human Toxicity Values
LD50 Rat ip 5390 mg/kg
参考文献

[1]. Synthesis, growth, structural, spectroscopic and optical studies of a new semiorganic nonlinear optical crystal: L-valine hydrochloride. Spectrochim Acta A Mol Biomol Spectrosc. 2008 Apr;69(4):1283-6.

其他信息
Therapeutic Uses
A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway.
It is used as a dietary supplement. It is also an ingredient of several preparations that have been promoted for disorders of the liver.
Branched chain amino acid (BCAA)-enriched protein or amino acid mixtures and, in some cases, BCAA alone, have been used in the treatment of a variety of metabolic disorders. These amino acids have received considerable attention in efforts to reduce brain uptake of aromatic amino acids and to raise low circulating levels of BCAA in patients with chronic liver disease and encephalopathy. They have also been used in parenteral nutrition of patients with sepsis and other abnormalities.
Drug Warnings
The aim of this study was to evaluate the compliance of the diet with limited branched-chain amino acids (BCAA) content in long-term observation of patients with maple syrup urine disease (MSUD). The study group consisted of 7 children at age of 1.5-18 years. Nutrition evaluation was based on current diet records from 3-4 days, every 3-4 months. ... Energy and content of most of the nutrients in proposed daily products lists were in agreement with RDI except calcium. Diet analysis at MSUD children revealed insufficient contents of: iron, zinc, copper, vitamin B1, B2, niacin and vitamin C (often below 90% RDI). /Branched chain amino acids/
Assays of the amino acid levels in 5,888 newborns and 20 subjects ranging in age from 1 to 20 years, suspected of metabolic diseases, revealed a case of "maple syrup urine disease" caused by disorders in the intermediate metabolism of valine, whose serum and urinary concentrations were followed up from the first days of life. This patient also showed frequent episodes of hypoglycemia. An early treatment with polyvitamins, minerals and trace elements for 18 months resulted in the partial reactivation of the deficient enzymatic systems and the return to normal of the serum and urinary valine and glucose values. Administration of the same treatment to patients over one year of age ... was much less effective, thus supporting the conclusion that the vitamins and minerals could be useful in the "maple syrup urine disease" only if they were administered immediately after the disease onset ...
Pharmacodynamics
L-valine is a branched-chain essential amino acid (BCAA) that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway. Valine is one of three branched-chain amino acids (the others are leucine and isoleucine) that enhance energy, increase endurance, and aid in muscle tissue recovery and repair. This group also lowers elevated blood sugar levels and increases growth hormone production. Supplemental valine should always be combined with isoleucine and leucine at a respective milligram ratio of 2:1:2. It is an essential amino acid found in proteins; important for optimal growth in infants and for growth in children and nitrogen balance in adults. The lack of L-valine may influence the growth of body, cause neuropathic obstacle, anaemia. It has wide applications in the field of pharmaceutical and food industry.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C5H11NO2
分子量
117.14
精确质量
117.078
CAS号
72-18-4
相关CAS号
D-Valine;640-68-6;L-Valine-15N;59935-29-4;L-Valine-13C5,15N;202407-30-5;L-Valine-1-13C;81201-85-6;L-Valine-13C5;55443-52-2;L-Valine-13C5,15N,d8;1994261-62-9;L-Valine-13C5,15N,d2;201417-09-6;L-Valine-2-13C;73834-52-3;L-Valine-1-13C,15N;87019-54-3;L-Valine-d;77257-03-5;L-Valine-15N,d8
PubChem CID
6287
外观&性状
White to off-white solid powder
密度
1.1±0.1 g/cm3
沸点
213.6±23.0 °C at 760 mmHg
熔点
315ºC
闪点
83.0±22.6 °C
蒸汽压
0.1±0.9 mmHg at 25°C
折射率
1.461
LogP
0.2
tPSA
63.32
氢键供体(HBD)数目
2
氢键受体(HBA)数目
3
可旋转键数目(RBC)
2
重原子数目
8
分子复杂度/Complexity
90.4
定义原子立体中心数目
1
SMILES
CC(C)[C@@H](C(=O)O)N
InChi Key
KZSNJWFQEVHDMF-BYPYZUCNSA-N
InChi Code
InChI=1S/C5H11NO2/c1-3(2)4(6)5(7)8/h3-4H,6H2,1-2H3,(H,7,8)/t4-/m0/s1
化学名
L-valine
别名
ValineL-Valine NSC-76038 Valina EC 200-773-6 NSC76038NSC 76038
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
H2O : ~20 mg/mL (~170.72 mM)
溶解度 (体内实验)
配方 1 中的溶解度: 25 mg/mL (213.40 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶。 (<60°C).

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 8.5368 mL 42.6840 mL 85.3679 mL
5 mM 1.7074 mL 8.5368 mL 17.0736 mL
10 mM 0.8537 mL 4.2684 mL 8.5368 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT06581991 NOT YET RECRUITING Dietary Supplement: Valine oral solution (50mg/ml) and isoleucine oral solution (25mg/ml) Maple Syrup Urine Disease Meta Healthcare Ltd 2024-10 Not Applicable
NCT06372314 NOT YET RECRUITING Drug: Total parenteral nutrition (TPN): this is total nutrition provided by central vein. Stable Neonates Receiving Total Parenteral Nutrition (TPN) The Hospital for Sick Children 2024-08 Not Applicable
NCT05705414 NOT YET RECRUITING Drug: Valine
Drug: EEA
End Stage Renal Disease The University of Texas Health Science Center at San Antonio 2024-09 Early Phase 1
NCT02305056 TERMINATED Drug: C13 N15 Valine High-grade Glioma University Hospital, Grenoble 2014-09 Phase 1
NCT01495871 WITHDRAWN Dietary Supplement: Amino Acids
Dietary Supplement: Placebo of inert compounds
Dietary Supplement: Valine
Traumatic Brain Injury The University of Texas Medical Branch, Galveston 2011-11 Not Applicable
相关产品
联系我们