规格 | 价格 | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
On single oral or subcutaneous administration of (4S, 1R)-trans-or (4S,1R)-cis-prallethrin labeled with (14)C in the alcohol moiety to rats at 2mg/kg, 96-104% of the dosed (14)C was eliminated into urine and feces within 7 days after administration. Monitoring of the expired air indicated that less than 0.1% of the dose was excreted as (14)CO2. ... Urine excretion of (14)C with the trans isomer was larger (60 - 78%) than the cis isomer (17-32%), where as (14)C fecal excretion with the trans isomer was smaller than that with the cis isomer. (14)C levels in blood and other tissues reached maxium within 3 hr after oral administration and thereafter decreased rapidly. (14)C tissue residues were generally very low on the 7th day after administration. The pyrethroids and pyrethrins are lipophilic and as such are rapidly distributed to the CNS. /Pyrethroids and pyrethrin/ Metabolism / Metabolites The major biotransformation reactions of prallethrin are summarized as follows: (1) oxidation at the methyl group of the isobutenyl group in the acid moiety; (2) hydroxylation at the C-1 or C-2 position of the propynyl group in alcohol moiety; (3) cleavage of the ester linkage; and (4) conjugation of resulting metablites; with glucoronic acid, sulfuric acid, or mercapturic acid. On single oral or subcutaneous administration of (4S, 1R)-trans-or (4S,1R)-cis-prallethrin labeled with (14)C in the alcohol moiety to rats at 2mg/kg, 96-104% of the dosed (14)C was eliminated into urine and feces within 7 days after administration. Monitoring of the expired air indicated that less than 0.1% of the dose was excreted as (14)CO2. ... Nineteen metabolites were identified in urine and feces. Two new types of S_linked conjugation (sulfonic acid and mercapturic acid types) were additionally identified. The relative resistance of mammals to the pyrethroids is almost wholly attributable to their ability to hydrolyze the pyrethroids rapidly to their inactive acid and alcohol components, since direct injection into the mammalian CNS leads to a susceptibility similar to that seen in insects. Some additional resistance of homeothermic organisms can also be attributed to the negative temperature coefficient of action of the pyrethroids, which are thus less toxic at mammalian body temperatures, but the major effect is metabolic. Metabolic disposal of the pyrethroids is very rapid, which means that toxicity is high by the iv route, moderate by slower oral absorption, and often unmeasureably low by dermal absorption. /Pyrethroids/ Fastest breakdown is seen with primary alcohol esters of trans-substituted acids since they undergo rapid hydrolytic and oxidative attack. For all secondary alcohol esters and for primary alcohol cis-substituted cyclopropanecarboxylates, oxidative attack is predominant. /Pyrethroids/ The ... pyrethroids are readily metabolized in animals and man by hydrolases and the CYP microsomal system. The metabolites are of lower toxicity than the parent compounds. |
---|---|
其他信息 |
Prallethrin is a member of cyclopropanes and a terminal acetylenic compound. It has a role as a pyrethroid ester insecticide and an agrochemical. It is functionally related to a chrysanthemic acid.
Mechanism of Action Following absorption through the chitinous exoskeleton of arthropods, pyrethrins stimulate the nervous system, apparently by competitively interfering with cationic conductances in the lipid layer of nerve cells, thereby blocking nerve impulse transmissions. Paralysis and death follow. /Pyrethrins/ Interaction with sodium channels is not the only mechanism of action proposed for the pyrethroids. Their effects on the CNS have led various workers to suggest actions via antagonism of gamma-aminobutyric acid (GABA)-mediated inhibition, modulation of nicotinic cholinergic transmission, enhancement of noradrenaline release, or actions on calcium ions. Since neurotransmitter specific pharmacological agents offer only poor or partical protection against poisoning, it is unlikely that one of these effects represents the primary mechanism of action of the pyrethroids, & most neurotransmitter release is secondary to increase sodium entry. /Pyrethroids/ (1) The interaction of a series of pyrethroid insecticides with the Na+ channels in myelinated nerve fibres of the clawed frog, Xenopus laevis, was investigated using the voltage clamp technique. (2) Out of 11 pyrethroids 9 insecticidally active compounds induce a slowly decaying Na+ tail current on termination of a step depolarization, whereas the Na+ current during depolarization was hardly affected. These tail currents are most readily explained by a selective reduction of the rate of closing of the activation gate in a fraction of the Na+ channels that have opened during depolarization. (3) The rate of decay of the Na+ tail current varies considerably with pyrethroid structure. After alpha-cyano pyrethroids the decay is at least one order of magnitude slower than after non-cyano pyrethroids. The decay always follows a single-exponential time course and is reversibly slowed when the temperature is lowered from 25 to 0 degrees C. Arrhenius plots in this temperature range are linear. (4) These results indicate that the relaxation of the activation gate in pyrethroid-affected Na+ channels is governed by an apparent first order, unimolecular process and that the rate of relaxation is limited by a single energy barrier. Application of transition state theory shows that after alpha-cyano pyrethroids this energy barrier is 9.6 kJ/mol higher than after non-cyano pyrethroids. (5) Differences in rate of decay of the Na+ tail current account for the reported differences in repetitive nerve activity induced by various pyrethroids. In addition, the effect of temperature on the rate of decay explains the increase in repetitive activity with cooling.. /Pyrethroids/ Type I Pyrethroid esters /lacking the alpha-cyano substituents/ affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT /dichlorodiphenyltrichloroethane/. /Pyrethroid esters lacking the alpha-cyano substituent/ For more Mechanism of Action (Complete) data for Prallethrin (6 total), please visit the HSDB record page. |
分子式 |
C19H24O3
|
---|---|
分子量 |
300.39206
|
精确质量 |
300.173
|
CAS号 |
23031-36-9
|
PubChem CID |
9839306
|
外观&性状 |
Yellow to yellow brown liquid
|
密度 |
1.08 g/cm3
|
沸点 |
389.8ºC at 760 mmHg
|
熔点 |
Liquid at room temperatures
|
闪点 |
167.9ºC
|
LogP |
3.449
|
tPSA |
43.37
|
氢键供体(HBD)数目 |
0
|
氢键受体(HBA)数目 |
3
|
可旋转键数目(RBC) |
5
|
重原子数目 |
22
|
分子复杂度/Complexity |
620
|
定义原子立体中心数目 |
0
|
SMILES |
C#CCC1=C(C)C(CC1=O)OC(=O)C2C(C=C(C)C)C2(C)C
|
InChi Key |
SMKRKQBMYOFFMU-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C19H24O3/c1-7-8-13-12(4)16(10-15(13)20)22-18(21)17-14(9-11(2)3)19(17,5)6/h1,9,14,16-17H,8,10H2,2-6H3
|
化学名 |
(2-methyl-4-oxo-3-prop-2-ynylcyclopent-2-en-1-yl) 2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropane-1-carboxylate
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 3.3290 mL | 16.6450 mL | 33.2901 mL | |
5 mM | 0.6658 mL | 3.3290 mL | 6.6580 mL | |
10 mM | 0.3329 mL | 1.6645 mL | 3.3290 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。