10-Deacetylbaccatin-III (10-DAB)

别名:
目录号: V2324 纯度: =99.54%
10-De乙酰基浆果赤霉素-III(也称为10-DAB、10-De乙酰基浆果赤霉素)是一种具有抗癌活性的中间体。
10-Deacetylbaccatin-III (10-DAB) CAS号: 32981-86-5
产品类别: Disease Research Fields
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
25mg
50mg
100mg
250mg
500mg
1g
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

纯度: =99.54%

产品描述
10-De乙酰基浆果赤霉素-III(也称为10-DAB、10-De乙酰基浆果赤霉素)是一种具有抗癌活性的中间体。用于制备紫杉醇,紫杉醇是从太平洋紫杉树短叶红豆杉以及红豆杉属其他物种的内皮中分离出来的一种抗白血病和肿瘤抑制剂。由于天然来源中紫杉醇的利用率较低,10-DAB被用作制备紫杉醇及其衍生物的原料。 10-DAB很容易从一年生红豆杉叶中提取,其化学结构非常折叠,α羟基受阻在C-13处,很容易与4α乙酰基形成氢键。
生物活性&实验参考方法
靶点
Intermediate for synthesis of paclitaxel
体外研究 (In Vitro)
尽管在转录水平上对紫杉醇生物合成的调控尚不清楚,但10-脱乙酰基浆果赤霉素III-10β-O-乙酰基转移酶(DBAT)是紫杉醇生物合成中的关键酶。从红豆杉细胞中克隆了dbat基因的1740 bp片段5'侧翼序列。通过缺失分析,在中华鳖细胞中定位了dbat启动子活性所需的重要调控元件。以重要调控元件为诱饵,利用酵母单杂交系统从中华鳖细胞cDNA文库中分离出一种新的WRKY转录因子TcWRKY1。茉莉酸甲酯(MeJA)特异性诱导TcWRKY1在中华鳖悬浮细胞中的基因表达。生化分析表明,TcWRKY1蛋白与重要调控元件中的两个W-box(TGAC)顺式元件特异性相互作用。TcWRKY1的过表达增强了中华绒螯蟹悬浮细胞中dbat的表达,RNA干扰(RNAi)降低了dbat转录物的水平。这些结果表明,TcWRKY1参与了中国红豆杉细胞紫杉醇生物合成的调控,dbat是该转录因子的靶基因。这项研究还为工程增加紫杉醇在红豆杉细胞培养中的积累提供了一个潜在的候选基因。[2]
紫杉醇和其他紫杉烷存在时的吸收[2]
为了确定其他紫杉烷对Flutax-2®摄取的影响,使用了聚集的悬浮细胞培养物。悬浮细胞培养物与Flutax-2®在其他紫杉烷(紫杉醇、浆果赤霉素III、头孢甘露碱和10-脱乙酰紫杉醇)存在下孵育。这些紫杉烷在结构上与紫杉醇相似,但有几个不同之处:浆果赤霉素III缺乏苯丙氨酸衍生的侧链;头孢甘露碱在侧链的第三个碳位置具有直链碳链,而不是苯基;10-脱乙酰基紫杉醇在C-10位缺少乙酰基(图3)。只有紫杉醇被发现显著(p<0.05)抑制Flutax-2®的细胞摄取(图4A)。这些结果清楚地表明了紫杉醇摄取的特异性。此外,Flutax-2®的抑制作用与存在的未标记紫杉醇的量呈线性关系(图4B)。在Flutax-2®的恒定浓度下,紫杉醇的加入能够竞争性地抑制荧光标记配体的细胞结合。竞争性抑制表明这两种化合物是通过特定的机制运输的。
体内研究 (In Vivo)
醋酸诱导的扭体反应[3]
所有化合物[例如10-脱乙酰基浆果赤霉素III(10-DAB)]均显示出显著的镇痛活性,尤其是与仅用生理盐水治疗的组相比,在40mg/kg剂量下,tasumatrol B将乙酸诱导的扭动减少了72.23%(表1)。
热板试验[3]
根据热板试验的结果,用紫杉类治疗的动物和用生理盐水治疗的动物之间没有统计学上的显著差异(表2)。
卡拉胶诱导的水肿[3]
分离的化合物[例如10-Deacetylbaccatin-III (10-DAB)/10-脱乙酰基浆果赤霉素III(10-DAB)]显著减少了卡拉胶引起的水肿。然而,发现tasumatrol B是最具活性的化合物,在20和40mg/kg的试验剂量下显示出显著(p<0.05)和高度显著(p<0.01)的活性。
酶活实验
体外脂肪氧合酶抑制试验[3]
通过使用不同浓度的分离化合物Sieboldogenin进行酶抑制试验。通过稍微修改Tappel(1962)开发的光谱法来测量脂氧合酶抑制活性。使用I-B型脂肪氧合酶(EC 1.13.11.12)(大豆)和亚油酸,无需进一步纯化。160μL磷酸钠缓冲液,0.1毫米(pH 7.0),将10 mL样品溶液(试验化合物)和20μL脂肪氧合酶溶液混合,在258°C下孵育5分钟。通过加入10μL亚油酸底物溶液引发反应,并在10分钟内观察吸收随(9Z,11E)-13S)-13-氢过氧化十八碳-9,11-二烯酸酯的形成而变化。将测试样品和对照品溶解在50%乙醇中。所有反应均进行三次。黄芩素被用作脂肪氧化酶抑制的阳性对照(Khan等人,2009)。使用EZFit酶动力学程序计算抑制浓度(IC50)值。
动物实验
Acetic acid-induced writhing [3]
The acetic acid abdominal constriction test (Koster et al., 1959) was used with modification according to Nisar et al. (2008b). Mice were divided into various groups of five mice each and starved for 18 h. The negative control group received saline 10 mL/kg, p.o., while test groups received various doses of the test compounds via oral route. Meanwhile, the positive control group received acetylsalicylic acid (ASA); 100 mg/kg, p.o. After half an hour, all mice received a 0.7% aqueous solution of acetic acid 10 mg/kg, i.p. and writhings were counted for 10 min after acetic acid injection.
Hot-plate test [3]
A hot-plate latency test was performed according to the method described by Zhang et al. (2009). Animals were habituated twice to the hot-plate in advance. For testing, mice were placed on a hot-plate maintained at 55 ± 0.5°C. The time that elapsed until the incidence of either a hind paw licking or a jump off the surface was recorded as the hot-plate latency. Mice with baseline latencies of < 5 s or > 30 s were eliminated from the study. After the determination of baseline response latencies, hot-plate latencies were redetermined at 30, 60 and 120 min after oral administration of test drugs (aspirin as the reference drug).
Carrageenan-induced oedema [3]
The method of Winter et al. (1962) was utilized to assess the antiinflammatory potential of the test sample via testing its ability to inhibit the carrageenan-induced hind paw oedema, as reported earlier (Khan et al., 2009). Test samples and the control samples were administered orally in groups to rats. After 1 hour, acute inflammation at the desired site was induced by subplantar injection of 1% suspension of carrageenan (0.1 mL) using 2% gum acacia as a suspending agent in normal saline, in the right hind paw of the rats. The paw volume was measured plethysmometrically (Ugo Basile, Italy) at ‘0’ and 3 h after the carrageenan injection. Indomethacin 5 mg/kg, p.o. suspended in 2% gum acacia was used as the positive control. Percentage inhibition of the inflammation was determined by applying statistics on raw data followed by the calculation of percentage inhibition for each group by comparing with the control group. The formula used for comparison was: %I = 1 − (dt/dc) × 100, where dt is the difference in paw volume in the drug-treated group, dc is the difference in paw volume in control group and I stands for inhibition of inflammation.
Cotton-pellet oedema model [3]
In order to evaluate the antiinflammatory effect of the isolated compounds on the cotton-pellet oedema model, male rats were divided into four groups of five animals. To each animal, two cotton wool pellets weighing 18 ± 1 mg were implanted subcutaneously, one on each side of the abdomen. Animals were kept under light ether anesthesia according to the method reported by Swingle and Shideman (1972). Each compound was administered once daily throughout the experimental period of 7 days. On the day 8 after implantation, rats were anesthetized with pentobarbital sodium (50 mg/kg, i.p.). After induction of anesthesia, pellets were dissected, dried at 55°C for 15 h, and weighed after cooling. The mean granuloma weights as well as the percentage granuloma inhibition of the test compounds were calculated.
毒性/毒理 (Toxicokinetics/TK)
Acute toxicity [3]
All the compounds [e.g. 10-Deacetylbaccatin-III (10-DAB)] were found safe after 48 h of administration. Statistically, no considerable difference was observed between the negative control and other treatment groups both in terms of mortality and morbidity.
参考文献

[1]. Functional analysis of a WRKY transcription factor involved in transcriptional activation of the DBAT gene in Taxus chinensis. Plant Biol (Stuttg). 2013 Jan;15(1):19-26.

[2]. Paclitaxel uptake and transport in Taxus cell suspension cultures. Biochem Eng J. 2012 Apr 15;63:50-56.

[3]. Analgesic and antiinflammatory activities of taxoids from Taxus wallichiana Zucc. Phytother Res. 2012 Apr;26(4):552-6.

[4]. Taxol biosynthesis: Molecular cloning of a benzoyl- CoA:taxane 2α-O-benzoyltransferase cDNA from Taxus and functional expression in Escherichia coli. PNAS, 2000 , 97(25):13591-13596.

其他信息
10-deacetylbaccatin III is a tetracyclic diterpenoid and a secondary alpha-hydroxy ketone. It is functionally related to a baccatin III.
10-Deacetylbaccatin III has been reported in Taxus sumatrana, Taxus cuspidata, and other organisms with data available.
The transport of paclitaxel in Taxus canadensis suspension cultures was studied with a fluorescence analogue of paclitaxel (Flutax-2(®)) in combination with flow cytometry detection. Experiments were carried out using both isolated protoplasts and aggregated suspension cell cultures. Flutax-2(®) was shown to be greater than 90% stable in Taxus suspension cultures over the required incubation time (24 hours). Unlabeled paclitaxel was shown to inhibit the cellular uptake of Flutax-2(®), although structurally similar taxanes such as cephalomannine, baccatin III, and 10-deacetylbaccatin III did not inhibit Flutax-2(®) uptake. Saturation kinetics of Flutax-2(®) uptake was demonstrated. These results indicate the presence of a specific transport system for paclitaxel. Suspension cells elicited with methyl jasmonate accumulated 60% more Flutax-2(®) than unelicited cells, possibly due to an increased cellular storage capacity following methyl jasmonate elicitation. The presence of a specific mechanism for paclitaxel transport is an important first result that will provide the basis of more detailed studies as well as the development of targeted strategies for increased paclitaxel secretion to the extracellular medium.[2]
A study was conducted to identify constituents that might be responsible for analgesic and antiinflammatory conditions. Tasumatrol B, 1,13-diacetyl-10-deacetylbaccatin III (10-DAD) and 4-deacetylbaccatin III (4-DAB) were isolated from the bark extract of Taxus wallichiana Zucc. All the compounds were assessed for analgesic and antiinflammatory activities using an acetic acid-induced writhing model, a hot-plate test, a carrageenan-induced paw oedema model, a cotton-pellet oedema model and in vitro lipoxygenase inhibitory assay. All the compounds, especially tasumatrol B, revealed significant analgesic activity in comparison to a saline group based on an acetic acid-induced model. Similarly all of the test compounds, particularly tasumatrol B, showed significant antiinflammatory activity. However, all the compounds failed to exhibit any considerable activity in of the hot-plate test and the in vitro lipoxygenase inhibitory assay. This study has highlighted the potential of tasumatrol B to be further explored as a new lead compound for the management of pain and inflammation, one that has been discovered by scientific validation of the traditional medicinal use of T. wallichiana Zucc.[3]
A cDNA clone encoding a taxane 2α-O-benzoyltransferase has been isolated from Taxus cuspidata. The recombinant enzyme catalyzes the conversion of 2-debenzoyl-7,13-diacetylbaccatin III, a semisynthetic substrate, to 7,13-diacetylbaccatin III, and thus appears to function in a late-stage acylation step of the Taxol biosynthetic pathway. By employing a homology-based PCR cloning strategy for generating acyltransferase oligodeoxynucleotide probes, several gene fragments were amplified and used to screen a cDNA library constructed from mRNA isolated from methyl jasmonate-induced Taxus cells, from which several full-length acyltransferases were obtained and individually expressed in Escherichia coli. The functionally expressed benzoyltransferase was confirmed by radio-HPLC, 1H-NMR, and combined HPLC-MS verification of the product, 7,13-diacetylbaccatin III, derived from 2-debenzoyl-7,13-diacetylbaccatin III and benzoyl-CoA as cosubstrates in the corresponding cell-free extract. The full-length cDNA has an open reading frame of 1,320 base pairs and encodes a protein of 440 residues with a molecular weight of 50,089. The recombinant benzoyltransferase has a pH optimum of 8.0, Km values of 0.64 mM and 0.30 mM for the taxoid substrate and benzoyl-CoA, respectively, and is apparently regiospecific for acylation of the 2α-hydroxyl group of the functionalized taxane nucleus. This enzyme may be used to improve the production yields of Taxol and for the semisynthesis of drug analogs bearing modified aroyl groups at the C2 position.[4]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C29H36O10
分子量
544.59
精确质量
544.23
元素分析
C, 63.96; H, 6.66; O, 29.38
CAS号
32981-86-5
相关CAS号
32981-86-5
PubChem CID
154272
外观&性状
White to off-white solid powder
密度
1.4±0.1 g/cm3
沸点
716.8±60.0 °C at 760 mmHg
熔点
231-236 °C
闪点
233.5±26.4 °C
蒸汽压
0.0±2.4 mmHg at 25°C
折射率
1.624
LogP
3.51
tPSA
159.82
氢键供体(HBD)数目
4
氢键受体(HBA)数目
10
可旋转键数目(RBC)
5
重原子数目
39
分子复杂度/Complexity
1090
定义原子立体中心数目
9
SMILES
CC1=C2[C@H](C(=O)[C@@]3([C@H](C[C@@H]4[C@]([C@H]3[C@@H]([C@@](C2(C)C)(C[C@@H]1O)O)OC(=O)C5=CC=CC=C5)(CO4)OC(=O)C)O)C)O
InChi Key
YWLXLRUDGLRYDR-ZHPRIASZSA-N
InChi Code
InChI=1S/C29H36O10/c1-14-17(31)12-29(36)24(38-25(35)16-9-7-6-8-10-16)22-27(5,23(34)21(33)20(14)26(29,3)4)18(32)11-19-28(22,13-37-19)39-15(2)30/h6-10,17-19,21-22,24,31-33,36H,11-13H2,1-5H3/t17-,18-,19+,21+,22-,24-,27+,28-,29+/m0/s1
化学名
(2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-12b-acetoxy-4,6,9,11-tetrahydroxy-4a,8,13,13-tetramethyl-5-oxo-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-1H-7,11-methanocyclodeca[3,4]benzo[1,2-b]oxet-12-yl benzoate
别名

10DAB; 10-Deacetylbaccatin III; 32981-86-5; 10-Deacetylbaccatin; 10-Deacetylbaccatine III; UNII-4K6EWW2Z45; 10-Deacetyl baccatin III; CHEBI:18193; 10-DB III; 10DAB III

HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO:109 mg/mL (200.2 mM)
Water:<1 mg/mL
Ethanol:<1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (4.59 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (4.59 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (4.59 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.8362 mL 9.1812 mL 18.3624 mL
5 mM 0.3672 mL 1.8362 mL 3.6725 mL
10 mM 0.1836 mL 0.9181 mL 1.8362 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们