Trimetazidine

别名: TRIMETAZIDINE; 5011-34-7; 1-(2,3,4-Trimethoxybenzyl)piperazine; 1-[(2,3,4-trimethoxyphenyl)methyl]piperazine; 1-(2,3,4-Trimethoxy-benzyl)-piperazine; Piperazine, 1-((2,3,4-trimethoxyphenyl)methyl)-; N9A0A0R9S8; Trimetazidine (INN); 曲美他嗪;1-[(2,3,4-三甲氧基苯基)甲基]哌嗪;曲美他嗪(心康宁);曲美他嗪-D8;曲美他嗪杂质;1-(2,3,4-三甲氧基苄基)哌嗪
目录号: V35167 纯度: ≥98%
Trimetazidine 是一种选择性长链 3-酮酰辅酶 A 硫解酶抑制剂(拮抗剂),IC50 为 75 nM,可以抑制游离脂肪酸的 β 氧化。
Trimetazidine CAS号: 5011-34-7
产品类别: Autophagy
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
1mg
5mg
10mg
50mg
Other Sizes

Other Forms of Trimetazidine:

  • 盐酸曲美他嗪
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
Trimetazidine 是一种选择性长链 3-酮酰辅酶 A 硫解酶抑制剂(拮抗剂),IC50 为 75 nM,可以抑制游离脂肪酸的 β 氧化。 Trimetazidine 是一种有效的抗心绞痛剂和细胞保护剂,具有抗氧化、抗炎、镇痛和胃保护作用。曲美他嗪可诱导自噬,也是 HADHA 抑制剂。
生物活性&实验参考方法
靶点
IC50: 75 nM (long chain 3-ketoyl coenzyme A thiolase)[2] β-oxidation[2] Autophagy[3] 3-hydroxyacyl-CoA dehydrogenase (HADHA)[4]
体外研究 (In Vitro)
曲美他嗪(1–100 μM;24 小时;HUVEC)以剂量依赖性方式提高已经历氧化损伤的 HUVEC 的活力 [1]。
体内研究 (In Vivo)
在小鼠 ICES 测试中,剂量为 10 和 20 mg/kg 的曲美他嗪(5-20 mg/kg;PO;1 小时;瑞士白化雄性小鼠)显着升高癫痫阈值电流 [5]。
酶活实验
曲美他嗪在任何有氧灌注条件下对心肌耗氧量或心脏功都没有影响。在用5 mmol/L葡萄糖和0.4 mmol/L棕榈酸灌注的心脏中,曲美他嗪将棕榈酸氧化速率从488+/-24降低到408+/-15 nmol x g干重(-1)x分钟(-1)(P<0.05),而将葡萄糖氧化速率从1889+/-119增加到2378+/-166 nmol x g干重(-1)x分钟。在低流量缺血的心脏中,曲美他嗪导致葡萄糖氧化率增加210%。在有氧心脏和缺血性心脏中,曲美他嗪对糖酵解速率没有影响。曲美他嗪对葡萄糖氧化的影响伴随着丙酮酸脱氢酶活性形式增加37%,丙酮酸脱氢酶是葡萄糖氧化的限速酶。当棕榈酸盐被0.8 mmol/L辛酸盐或1.6 mmol/L丁酸盐取代时,未观察到曲美他嗪对糖酵解、葡萄糖氧化、脂肪酸氧化或活性丙酮酸脱氢酶的影响,这表明曲美他啶直接抑制长链脂肪酸氧化。脂肪酸氧化的这种减少伴随着参与脂肪酸β氧化的最后一种酶的长链异构体3-酮酰基辅酶a(CoA)硫解酶活性(IC(50)为75nmol/L)的显著降低。相反,需要超过10和100微mol/L的曲美他嗪浓度来分别抑制3-酮酰基辅酶A硫解酶的中链和短链形式。先前的研究表明,抑制脂肪酸氧化和刺激葡萄糖氧化可以保护缺血性心脏。因此,我们的数据表明,曲美他嗪的抗心脏病作用可能是因为长链3-酮酰基辅酶a硫解酶活性受到抑制,从而导致脂肪酸氧化减少和葡萄糖氧化刺激[3]。
细胞实验
细胞活力测定[1]
细胞类型: 人脐静脉内皮细胞 (HUVEC)
测试浓度: 1 μM、10 μM、100 μM
孵化持续时间:24小时
实验结果:增强氧化诱导的受损HUVEC的活力。
动物实验
Animal/Disease Models: Swiss albino male mice (24-35 g)[4]
Doses: 5 mg/kg, 10 mg/kg and 20 mg/kg; 10 mL/kg body weight
Route of Administration: Oral administration; 1 hour
Experimental Results: In 10 and 20mg/kg doses Dramatically raised the seizure-threshold current in the ICES test.
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
In elderly patients, a 35 mg oral modified release tablet reaches a mean Cmax of 115 µg/L, with a Tmax of 2.0-5.0 hours, and a mean AUC0-12 of 1104 h\*µg/L. In young, healthy patients, the same dose reaches a mean Cmax of 91.2 µg/L, with a Tmax of 2.0-6.0 hours, and an AUC0-12h 720 h\*µg/L.
Trimetazidine is 79-84% eliminated in the urine, with 60% as the unchanged parent compound. In a study of 4 healthy subjects, individual metabolites made up 0.01-1.4% of the dose recovered in urine. In the urine, 2-desmethyltrimetazidine made up 0-1.4% of the recovered dose, 3- and 4-desmethyltrimetazidine made up 0.039-0.071% each, N-methyltrimetazidine made up 0.015-0.11%, trimetazidine ketopiperazine made up 0.011-0.4%, N-formyltrimetazidine made up 0.035-0.42%, N-acetyltrimetazidine made up 0.016-0.19%, desmethyl trimetazidine O-sulphate made up 0.01-0.65%, and an unknown metabolite made up0.026-0.67%.
The volume of distribution of trimetazidine is 4.8 L/kg.
Trimetazidine clearance is strongly correlated with creatinine clearance. In eldery patients with a creatinine clearance of 72 ± 8 mL/min, trimetazidine clearance was 15.69 L/h. In young, healthy patients with a creatinine clearance of 134 ± 18 mL/min, trimetazidine clearance was 25.2 L/h.
Metabolism / Metabolites
Trimetazidine can be oxidized at the piperazine ring to form trimetazidine ketopiperazine. Trimetazidine can also be N-formylated, N-acetylated, or N-methylated at the piperazine ring to form N-formyltrimetazidine, N-acetyltrimetazidine, and N-methyltrimetazidine respectively. Alternatively, trimetazidine can be demethylated at the 2, 3, or 4 position of the 2,3,4-trimethoxybenzyl moiety to form 2-desmethyltrimetazidine, 3-desmethyltrimetazidine, or 4-desmethyltrimetazidine. The desmethyltrimetazidine metabolites can undergo sulfate conjugation or glucuronidation prior to elimination.
Biological Half-Life
In young, healthy subjects, the half life of trimetazidine is 7.81 hours. In patients over 65, the half life increases to 11.7 hours.
毒性/毒理 (Toxicokinetics/TK)
Protein Binding
Trimetazidine is 15% protein bound in plasma. Trimetazidine can bind to human serum albumin.
参考文献

[1]. Protective effects of trimetazidine against vascular endothelial cell injury induced by oxidation. Journal of Geriatric Cardiology, December 2008 , Vol 5 No 4.

[2]. Defining the role of trimetazidine in the treatment of cardiovascular disorders: some insights on its role in heart failure and peripheral artery disease. Drugs. 2014 Jun;74(9):971-80.

[3]. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res. 2000 Mar 17;86(5):580-8.

[4]. Inhibition of Fatty Acid Oxidation Modulates Immunosuppressive Functions of Myeloid-Derived Suppressor Cells and Enhances Cancer Therapies. Cancer Immunol Res. 2015 Nov;3(11):1236-47.

[5]. Trimetazidine exerts protection against increasing current electroshock seizure test in mice. Seizure. 2010 Jun;19(5):300-2.

其他信息
1-[(2,3,4-trimethoxyphenyl)methyl]piperazine is an aromatic amine.
Trimetazidine is a piperazine derivative indicated for the symptomatic treatment of stable angina pectoris in patients inadequately controlled or intolerant to first line therapies. Trimetazidine has been studied as a treatment for angina pectoris since the late 1960s. Acidic conditions, caused by anaerobic metabolism and fatty acid oxidation, in response to myocardial ischemia, activate sodium-hydrogen and sodium-calcium antiport systems. The increased intracellular calcium decreases contractility. It is hypothesized that trimetazidine inhibits 3-ketoacyl coenzyme A thiolase, which decreases fatty acid oxidation but not glucose metabolism, preventing the acidic conditions that exacerbate ischemic injury. However, evidence for this mechanism is controversial. Trimetazidine is not FDA approved. However, it has been approved in France since 1978.
Trimetazidine is an orally available small molecule compound with anti-ischemic, and potential immunomodulating and antineoplastic properties. Although its exact mechanism is not yet fully elucidated, it is postulated that upon administration, trimetazidine selectively inhibits long-chain 3-ketoacyl coenzyme A thiolase (LC 3-KAT), the final enzyme in the free fatty acid (FFA) beta-oxidation pathway. This stimulates glucose oxidation, which requires less oxygen usage and cellular energy than in the beta-oxidation process. This optimizes myocardial energy metabolism and cardiac functioning in an ischemic condition. In cancer cells, the inhibition of fatty acid oxidation (FAO) alters the metabolic processes needed for tumor cell function and proliferation, thereby inducing tumor cell apoptosis. In addition, inhibition of FAO may potentially block the immunosuppressive functions of myeloid-derived suppressor cells (MSDCs), which are thought to promote malignant cell proliferation and migration by inhibiting T-cell function.
A vasodilator used in angina of effort or ischemic heart disease.
Drug Indication
Trimetazidine is indicated for the symptomatic treatment of stable angina pectoris in patients inadequately controlled or intolerant to first line therapies.
Mechanism of Action
During myocardial ischemia, anaerobic metabolism takes over, increasing levels of lactic acid. The decreased intracellular pH and increased concentration of protons activates sodium-hydrogen and sodium-calcium antiport systems, raising intracellular calcium concentrations, finally leading to decreased contractility. This injury to the myocardium raises concentrations of catecholamines, which activate hormone sensitive lipase, and increasing fatty acid concentrations in plasma. When the myocardium is repurfused, fatty acid oxidation becomes the dominant form of ATP production, maintaining an acidic pH, and further exacerbating the injury. The mechanism of action of trimetazidine is not fully understood. Trimetazidine may inhibit mitochondrial 3-ketoacyl coenzyme A thiolase, decreasing long chain fatty acid β-oxidation but not glycolysis in the myocardium. The decreased long chain fatty acid β-oxidation is compensated for by increased use of glucose, preventing a lowered myocardial pH, and further decreases in contractility. However, another study suggests that 3-ketoacyl coenzyme A thiolase may not be trimetazidine's target, and that this mechanism may be incorrect.
Pharmacodynamics
Trimetazidine is indicated for the symptomatic treatment of stable angina pectoris in patients inadequately controlled or intolerant to first line therapies. Patients should be counselled regarding the risk of use with reduced renal or hepatic function, worsening of extrapyramidal symptoms or other movement disorders, and risk of falls.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C14H22N2O3
分子量
266.34
精确质量
274.213
元素分析
C, 63.13; H, 8.33; N, 10.52; O, 18.02
CAS号
5011-34-7
相关CAS号
Trimetazidine dihydrochloride;13171-25-0
PubChem CID
21109
外观&性状
White to off-white ointment
密度
1.1±0.1 g/cm3
沸点
364.0±37.0 °C at 760 mmHg
熔点
200 - 205ºC
闪点
174.0±26.5 °C
蒸汽压
0.0±0.8 mmHg at 25°C
折射率
1.524
LogP
0.8
tPSA
42.96
氢键供体(HBD)数目
1
氢键受体(HBA)数目
5
可旋转键数目(RBC)
5
重原子数目
19
分子复杂度/Complexity
259
定义原子立体中心数目
0
SMILES
COC1=C(C(=C(C=C1)CN2CCNCC2)OC)OC
InChi Key
UHWVSEOVJBQKBE-UHFFFAOYSA-N
InChi Code
InChI=1S/C14H22N2O3/c1-17-12-5-4-11(13(18-2)14(12)19-3)10-16-8-6-15-7-9-16/h4-5,15H,6-10H2,1-3H3
化学名
1-[(2,3,4-trimethoxyphenyl)methyl]piperazine
别名
TRIMETAZIDINE; 5011-34-7; 1-(2,3,4-Trimethoxybenzyl)piperazine; 1-[(2,3,4-trimethoxyphenyl)methyl]piperazine; 1-(2,3,4-Trimethoxy-benzyl)-piperazine; Piperazine, 1-((2,3,4-trimethoxyphenyl)methyl)-; N9A0A0R9S8; Trimetazidine (INN);
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: (1). 本产品在运输和储存过程中需避光。  (2). 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ≥ 125 mg/mL (469.32 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.08 mg/mL (7.81 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.08 mg/mL (7.81 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.08 mg/mL (7.81 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 3.7546 mL 18.7730 mL 37.5460 mL
5 mM 0.7509 mL 3.7546 mL 7.5092 mL
10 mM 0.3755 mL 1.8773 mL 3.7546 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
Targeting Metabolic Flexibility in Amyotrophic Lateral Sclerosis (ALS)
CTID: NCT04788745
Phase: Phase 2
Status: Completed
Date: 2023-07-20
Efficacy of Trimetazidine in Diabetic Patients
CTID: NCT05556005
Phase: Phase 2
Status: Recruiting
Date: 2022-09-27
Efficacy and Safety of Wen Xin Granules for the Treatment of Unstable Angina Pectoris
CTID: NCT04661709
Phase: Phase 4
Status: Unknown status
Date: 2021-01-25
Treatment of Intermediate-stage Hepatocellular Carcinoma
CTID: NCT03274427
Phase: Phase 3
Status: Unknown status
Date: 2017-09-15
Treatment of Advanced Hepatocellular Carcinoma
CTID: NCT03278444
Phase: Phase 3
Status: Unknown status
Date: 2017-09-12
Trimetazidine Efficacy in Attenuating Paclitaxel-Induced Peripheral Neuropathy
CTID: NCT06459193
Phase: Phase 1/Phase 2
Status: Recruiting
Date: 2024-06-25
The Effect of Trimetazidine on Mitochondrial Function, Myocardial Performance, and Invasive Hemodynamics in Patients Diagnosed With Wild-Type Transthyretin Cardiac Amyloidosis
CTID: NCT05633563
Phase: Phase 4
Status: Completed
Date: 2024-04-25
Benefits of Trimetazidine in MAFLD Pateints
CTID: NCT06140953
Phase: Phase 2
Status: Recruiting
Date: 2023-11-21
The ImPact of Trimetazidine on MicrOcirculation After Stenting for Stable Coronary Artery Disease
CTID: NCT02107144
Phase: Phase 4
Status: Completed
Date: 2023-06-02
Allopurinol and Trimetazidine as a Preventive of Acute Kidney Injury in PCI Patients
CTID: NCT05540184
Phase: Phase 4
Status: Recruiting
Date: 2023-01-19
相关产品
联系我们