(+)-Catechin Hydrate

别名: (+)-Catechin Hydrate; 225937-10-0; Catechin hydrate; 88191-48-4; (+)-catechin monohydrate; (2R,3S)-2-(3,4-Dihydroxyphenyl)chroman-3,5,7-triol hydrate; MFCD00149354; (+)-Cyanidol-3; (+)-儿茶素,儿茶酚,儿茶酸,邻苯二酚;(+/-)-儿茶精;DL-儿茶素;D(+)-儿茶精;D(+)-儿茶素(四水);D(+)-儿茶酸;反式-3,3ˊ,4ˊ,4,7-五羟基黄烷;四水合-D(+)儿茶素;(+)-儿茶精;(+)-儿茶素(一水物);(2R,3S)-2-(3,4-二羟基苯基)-3,4-二氢-1(2H)-苯并吡喃-3,5,7-三醇一水物;水合儿茶素;(+)-儿茶精水合物;(+)-儿茶精 (+)-儿茶素;(+)-儿茶素;(+)-儿茶素 标准品
目录号: V9401 纯度: ≥98%
(+)-儿茶素水合物抑制环氧合酶-1 (COX-1),IC50 为 1.4 μM。
(+)-Catechin Hydrate CAS号: 225937-10-0
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
100mg
Other Sizes

Other Forms of (+)-Catechin Hydrate:

  • 2-(3,4-Dihydroxyphenyl)chroman-3,5,7-triol
  • (+)-Epicatechin (Dexepicatechin; (+)-Epicatechol)
  • Catechin 7-O-β-D-glucopyranoside
  • Epicatechin pentaacetate
  • 5,7,3'-Tri-O-methyl (-)-epicatechin
  • Catechin 3-O-α-L-rhamnopyranoside
  • 儿茶素
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
(+)-儿茶素水合物抑制环氧合酶-1 (COX-1),IC50 为 1.4 μM。
生物活性&实验参考方法
靶点
Natural flavonoid in green tea; COX-1/cyclooxygenase-1
体外研究 (In Vitro)
在 70 μg/mL 和 IC50 为 1.4 μM 时,(+)-儿茶素对环加氧酶-1 (COX-1) 具有 >95% 的抑制作用 [1]。使用 (+)-儿茶素处理 24 小时后,观察到颜色呈剂量依赖性下降。在测试的 (+)-儿茶素最高浓度 (160 μg/mL) 下,54.76% 的细胞死亡,(+)-儿茶素的 IC50 为 127.62 μg/mL。用 (+)-儿茶素处理 MCF-7 细胞导致细胞凋亡的诱导增加,且呈剂量和时间依赖性。 24小时后,与对照细胞相比,用150 μg/mL和300 μg/mL (+)-儿茶素处理的细胞有40.7%和41.16%经历细胞凋亡。用 150 μg/mL (+)-儿茶素处理 24 小时后,MCF-7 细胞的 Caspase-3、-8 和 -9 表达水平分别增加了 5.81、1.42、3.29 和 2.68 倍。与未处理的对照细胞水平进行比较[2]。
体内研究 (In Vivo)
尽管差异不具有统计显着性,但以最低测试剂量(即 50 mg/kg,口服)(+)-儿茶素治疗的动物在选择试验中探索不熟悉的靶标的频率明显更高。 (+)-儿茶素以剂量依赖性方式预防时间引起的情景记忆丧失;口服200 mg/kg是最有效的剂量。与单独使用 DOX 治疗组相比,(+)-儿茶素治疗可防止 MPO 水平升高(海马中为 21.98±9.44%,额叶皮层为 36.76±4.39%)[3]。
细胞实验
体外研究[2]
IMR-32细胞系是高加索人种的雄性神经母细胞瘤细胞系。它购自NCCS,在含有10%胎牛血清的DMEM培养基中传代培养。这些细胞用于细胞活力和细胞保护研究。神经保护研究中儿茶素和DOX的治疗是同时进行的(不改变培养基),其中Catechin在DOX添加前1小时添加。
未分化IMR-32细胞的MTT法[2]
将每孔5000个细胞接种在由50µl培养基组成的微孔板中,孵育24小时。24小时后,在孔中加入50µl浓度在31.23至250µg/ml范围内的儿茶素,持续一小时。随后,加入50µl DOX(1或2µg/ml)并孵育24小时。接着,加入50μl MTT(2mg/ml)并在37°C下孵育3小时,然后取出培养基并加入100µl DMSO,在轨道振荡器上振荡约5分钟。使形成的Formazan晶体溶解在DMSO中。DMSO溶解的甲赞的吸光度在540nm处读取(Shi等人,2015)。通过使用GraphPad Prism将数据拟合到非线性回归中,计算出儿茶素的IC50。
细胞周期分析[2]
流式细胞术用于评估儿茶素对DOX诱导的细胞周期改变的影响。将100万个分化的细胞接种在培养瓶中过夜,在37°C下用儿茶素(40µg/ml)孵育2小时,然后用1.5µg/ml的DOX孵育24小时。通过胰蛋白酶消化将细胞从培养瓶中分离出来,用PBS离心洗涤。收集细胞颗粒,用70%冰冷的甲醇固定,并在-20°C下储存24小时。然后用PBS洗涤细胞沉淀,并加入等渗PI溶液(25µM碘化丙啶、0.03%NP-40和40µg/ml RNase A)进行染色。在激发波长488nm和发射波长575/40nm下,用Accuri C6流式细胞仪分析染色细胞进行细胞周期研究(Reddy等人,2015;Simon等人,2016)。
动物实验
In vivo studies[2]
Selection of doses In the preliminary experiments for assessing the procognitive effect of Catechin, the selected doses were 50, 100 and 200 mg/kg for dose–response analysis. In later studies for chemobrain i.e., DOX-induced memory deficit model, the dose of Catechin selected was 100 mg/kg as it showed a promising effect in preliminary studies and moreover, the treatment was on a chronic basis. The dose of DOX selected was 2.5 mg/kg according to the previous studies and standardized laboratory procedures (Steiniger et al. 2004; Swamy et al. 2011; Grandhi et al. 2016).[2]
Preparation and administration of drugs In the preliminary study for assessing the nootropic effect of Catechin using time induced memory deficit model, the doses were prepared at 50, 100, 200 mg/kg in 0.25% w/v sodium carboxy methylcellulose (CMC) and administered orally for 7 days prior to and during the experimental trials. Four experimental groups were used (n = 9 each) for one vehicle (CMC) and three groups of Catechin (three doses).[2]
For inducing neurotoxicity and systemic toxicity, DOX (Adriamycin at 2.5 mg/kg) was administered intraperitoneally in 10 cycles on every 5 days. Three experimental groups (n = 12 each) were used viz., vehicle control (0.25% w/v CMC), DOX alone and Catechin (100 mg/kg in 0.25% CMC p.o.). Catechin was administered orally for 57 days including one-week treatment prior to the first cycle of DOX. Following the last cycle of DOX on day 57, i.e., on day 58, the behavioral study was conducted. All treatments, as well as the behavioral analysis, were carried out between 9 a.m. to 4 p.m. Body weight of the animals was taken once in 3 days throughout the study. During the experimental trials, the oral treatment was given 1 h before the familiarization trial.
Time-induced natural memory deficits model[2]
Episodic memory deficits can be induced in rats naturally by increasing the time delay between familiarization and choice trials. Hence the initial experiment was conducted to assess the effect of Catechin on time -induced memory deficits by using an ITI of 24 h. In this test, rats were habituated to the arenas on day 1 and were subjected to familiarization trial on day 2. Then after an ITI of 24 h, i.e., on day 3, animals were subjected to recognition trial with one novel object replacing the familiar object. Four experimental groups were used. Rats were treated with either Catechin (50, 100 and 200 mg/kg, p.o.) or CMC (10 ml/kg, p.o.) for 7 days before the trial initiation. During the experimental trials, treatment was given 1 h before the actual trial in familiarization and choice trials
参考文献

[1]. Potential cancer-chemopreventive activities of wine stilbenoids and flavans extracted from grape (Vitis vinifera) cell cultures. Nutr Cancer. 2001;40(2):173-9.

[2]. Catechin ameliorates doxorubicin-induced neuronal cytotoxicity in in vitro and episodic memory deficit in in vivo in Wistar rats. Cytotechnology. 2018 Feb;70(1):245-259.

[3]. Alshatwi AA. Catechin hydrate suppresses MCF-7 proliferation through TP53/Caspase-mediated apoptosis. J Exp Clin Cancer Res. 2010 Dec 17;29:167.

其他信息
(+)-catechin monohydrate is the monohydrate of (+)-catechin. It has a role as a geroprotector. It contains a (+)-catechin.
(+)-catechin is the (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. It has a role as an antioxidant and a plant metabolite. It is an enantiomer of a (-)-catechin.
An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms.
Cianidanol has been reported in Camellia sinensis, Paeonia obovata, and other organisms with data available.
Catechin is a metabolite found in or produced by Saccharomyces cerevisiae.
An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms.
See also: Gallocatechin (has subclass); Crofelemer (monomer of); Bilberry (part of) ...
Moderate consumption of wine is associated with a reduced risk of cancer. Grape plant cell cultures were used to purify 12 phenols: the stilbenoids trans-astringin, trans-piceid (2), trans-resveratroloside, trans-resveratrol, trans-piceatannol, cis-resveratroloside, cis-piceid, and cis-resveratrol; the flavans (+)-catechin, (-)-epicatechin, and epicatechin 3-O-gallate; and the flavan dimer procyanidin B2 3'-O-gallate. These compounds were evaluated for potential to inhibit cyclooxygenases and preneoplastic lesion formation in carcinogen-treated mouse mammary glands in organ culture. At 10 micrograms/ml, trans-astringin and trans-piceatannol inhibited development of 7,12-dimethylbenz[a]anthracene-induced preneoplastic lesions in mouse mammary glands with 68.8% and 76.9% inhibition, respectively, compared with untreated glands. The latter compound was the most potent of the 12 compounds tested in this assay, with the exception of trans-resveratrol (87.5% inhibition). In the cyclooxygenase (COX)-1 assay, trans isomers of the stilbenoids appear to be more active than cis isomers: trans-resveratrol [50% inhibitory concentration (IC50) = 14.9 microM, 96%] vs. cis-resveratrol (IC50 = 55.4 microM). In the COX-2 assay, among the compounds tested, only trans- and cis-resveratrol exhibited significant inhibitory activity (IC50 = 32.2 and 50.2 microM, respectively). This is the first report showing the potential cancer-chemopreventive activity of trans-astringin, a plant stilbenoid recently found in wine. trans-Astringin and its aglycone trans-piceatannol were active in the mouse mammary gland organ culture assay but did not exhibit activity in COX-1 and COX-2 assays. trans-Resveratrol was active in all three of the bioassays used in this investigation. These findings suggest that trans-astringin and trans-piceatannol may function as potential cancer-chemopreventive agents by a mechanism different from that of trans-resveratrol.[1]
Cognitive dysfunction by chemotherapy compromises the quality of life in cancer patients. Tea polyphenols are known chemopreventive agents. The present study was designed to evaluate the neuroprotective potential of (+) catechin hydrate (catechin), a tea polyphenol, in IMR-32 neuroblastoma cells in vitro and alleviation of episodic memory deficit in Wistar rats in vivo against a widely used chemotherapeutic agent, Doxorubicin (DOX). In vitro, neuroprotective studies were assessed in undifferentiated IMR-32 cells using percentage viability and in differentiated cells by neurite length. These studies showed catechin increased percentage viability of undifferentiated IMR-32 cells. Catechin pretreatment also showed an increase in neurite length of differentiated cells. In vivo neuroprotection of catechin was evaluated using novel object recognition task in time-induced memory deficit model at 50, 100 and 200 mg/kg dose and DOX-induced memory deficit models at 100 mg/kg dose. The latter model was developed by injection of DOX (2.5 mg/kg, i.p.) in 10 cycles over 50 days in Wistar rats. Catechin showed a significant reversal of time-induced memory deficit in a dose-dependent manner and prevention of DOX-induced memory deficit at 100 mg/kg. In addition, catechin treatment showed a significant decrease in oxidative stress, acetylcholine esterase and neuroinflammation in the hippocampus and cerebral cortex in DOX-induced toxicity model. Hence, catechin may be a potential adjuvant therapy for the amelioration of DOX-induced cognitive impairment which may improve the quality of life of cancer survivors. This improvement might be due to the elevation of antioxidant defense, prevention of neuroinflammation and inhibition of acetylcholine esterase enzyme.[2]
Catechin hydrate (CH), a strong antioxidant that scavenges radicals, is a phenolic compound that is extracted from plants and is present in natural food and drinks, such as green tea and red wine. CH possesses anticancer potential. The mechanism of action of many anticancer drugs is based on their ability to induce apoptosis. In this study, I sought to characterize the downstream apoptotic genes targeted by CH in MCF-7 human breast cancer cells. CH effectively kills MCF-7 cells through induction of apoptosis. Apoptosis was confirmed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and real-time PCR assays. Cells were exposed to 150 μg/ml CH and 300 μg/mL CH for 24 hours, which resulted in 40.7% and 41.16% apoptotic cells, respectively. Moreover, a 48-hour exposure to 150 μg/ml CH and 300 μg/ml CH resulted in 43.73% and 52.95% apoptotic cells, respectively. Interestingly, after 72 hours of exposure to both concentrations of CH, almost 100% of cells lost their integrity. These results were further confirmed by the increased expression of caspase-3,-8, and -9 and TP53 in a time-dependent and dose-dependent manner, as determined by real-time quantitative PCR. In summary, the induction of apoptosis by CH is affected by its ability to increase the expression of pro-apoptotic genes such as caspase-3, -8, and -9 and TP53.[3]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C15H14O6
分子量
290.2681
精确质量
308.089
元素分析
C, 58.44; H, 5.23; O, 36.33
CAS号
225937-10-0
相关CAS号
(±)-Catechin;7295-85-4;Catechin;154-23-4
PubChem CID
107957
外观&性状
Off-white to yellow solid powder
沸点
630.4ºC at760mmHg
熔点
175-177ºC
闪点
335ºC
蒸汽压
9.29E-17mmHg at 25°C
LogP
1.481
tPSA
119.61
氢键供体(HBD)数目
6
氢键受体(HBA)数目
7
可旋转键数目(RBC)
1
重原子数目
22
分子复杂度/Complexity
364
定义原子立体中心数目
2
SMILES
C1[C@@H]([C@H](OC2=CC(=CC(=C21)O)O)C3=CC(=C(C=C3)O)O)O.O
InChi Key
OFUMQWOJBVNKLR-NQQJLSKUSA-N
InChi Code
InChI=1S/C15H14O6.H2O/c16-8-4-11(18)9-6-13(20)15(21-14(9)5-8)7-1-2-10(17)12(19)3-7;/h1-5,13,15-20H,6H2;1H2/t13-,15+;/m0./s1
化学名
(2R,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol;hydrate
别名
(+)-Catechin Hydrate; 225937-10-0; Catechin hydrate; 88191-48-4; (+)-catechin monohydrate; (2R,3S)-2-(3,4-Dihydroxyphenyl)chroman-3,5,7-triol hydrate; MFCD00149354; (+)-Cyanidol-3;
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ~50 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (Infinity mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (Infinity mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (Infinity mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 3.4451 mL 17.2253 mL 34.4507 mL
5 mM 0.6890 mL 3.4451 mL 6.8901 mL
10 mM 0.3445 mL 1.7225 mL 3.4451 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们