规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
靶点 |
PKC:660 nM (IC50); PKA:0.17 mM (IC50); TPK:0.1 mM (IC50)
|
||
---|---|---|---|
体外研究 (In Vitro) |
白屈菜红碱取代 BclXL 中含有 BH3 的蛋白 Bax,并抑制 BclXL-Bak BH3 肽结合,IC50 为 1.5 μM。用白屈菜红碱处理的负载细胞进行细胞植入,其特征是线粒体参与[1]。 Chelidonine 治疗通过阻断 p38 丝裂原蛋白激活剂 (MAPK) 和细胞外信号调节蛋白激活剂 1 和 2 (ERK1/2) 来激活和抑制 LPS 诱导的 TNF-α 水平以及 LPS 诱导的小鼠腹膜巨细胞。此外,p38 MAPK 和 ERK1/2 对中间介质表达的控制可能解释了白屈菜赤碱对 NO 和细胞因子 TNF-α 生成的影响 [2]。赤藓碱的 LD50 值为 3.46 μM,对人单核白细胞具有细胞毒性。 LPS 刺激后两小时,暴露于血根碱和白屈菜红碱的细胞 CCL-2 的表达分别显着降低 3.5 倍和 1.9 倍 [3]。以剂量依赖性方式,白屈菜碱氯化物显着增加 ERK1/2 磷酸化。此外,p38 磷酸化可以被氯化白屈菜红碱抑制[4]。
|
||
体内研究 (In Vivo) |
当接触 LPS 时,白屈菜红碱可抑制血清中一氧化氮 (NO) 和肿瘤坏死因子-α (TNF-α) 的产生,从而在体内实验诱导的小鼠内毒素休克模型中表现出显着的抗炎作用 [2]。当腹膜内给药时,氯化白屈菜红碱(5 mg/kg/天)会导致肾细胞癌细胞凋亡,但不会对小鼠造成相当大的伤害。 P53 以剂量依赖性方式响应氯化胆碱治疗而积累[4]。
|
||
酶活实验 |
抗凋亡Bcl-2家族成员的小分子抑制剂的鉴定开辟了新的治疗机会,而天然产物的化学结构和生物活性的巨大多样性尚未被系统地利用。在这里,我们报告通过高通量筛选从天然产物中提取的107,423个提取物,鉴定出chelerythrine是BclXL-Bak Bcl-2同源3 (BH3)结构域结合的抑制剂。Chelerythrine抑制BclXL- bak BH3肽结合的IC50为1.5 μ m,并取代BclXL中含有BH3的蛋白Bax。用chelerythrine处理的哺乳动物细胞发生凋亡,其特征表明与线粒体途径有关。在完整细胞中,星孢素、H7、依托opo苷和车车红碱释放线粒体中的细胞色素c,而只有车车红碱释放离体线粒体中的细胞色素c。此外,bclxl过表达的细胞对本研究中使用的凋亡刺激完全耐药,但对车车菊碱仍然敏感。虽然chelerythrine被广泛认为是一种蛋白激酶C抑制剂,但其介导细胞凋亡的机制仍然存在争议。我们的数据表明,赤藓碱通过直接靶向Bcl-2家族蛋白的机制触发细胞凋亡[5]。
In Vitro Binding Analysis-Labeled Bax是利用Promega的TnT t7偶联网状细胞裂解液系统,通过体外转录/翻译pXJHA-Bax制备的。GST结合实验按照之前的描述进行,只是在加入[35S]Bax之前,在GSTBclXLΔ19中孵育浓度增加的车车菊氨酸30分钟。[5] |
||
细胞实验 |
MTT法测定细胞活力。将100µL培养基中的细胞(2×103 HEK-293细胞/孔和3×103 SW-839细胞/孔)接种到96孔板中,孵育12小时。然后,将每孔中的培养基替换为含有不同浓度氯化Chelerythrine的培养基,在37°C下再孵育24和48小时。随后,每孔中加入20µL MTT (5 mg/mL)。在37℃下孵育4小时后,去除上清,每孔加入100µL DMSO。使用iMark™微孔板吸光度仪测定吸光度值(在540nm处读取)[1]。
先前的研究表明,苯并[c]菲啶生物碱白屈菜红碱氯化物(CC)对各种肿瘤具有抑制作用。然而,CC的抗癌活性及其潜在机制尚未在癌症肾细胞中阐明。本研究观察了CC对肾癌症细胞生长抑制和凋亡的影响。流式细胞术和3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑鎓溴化物测定显示,CC以时间和剂量依赖的方式显著抑制HEK-293和人癌症SW-839细胞的生长。在裸小鼠中进行的异种移植物小鼠模型显示,CC治疗后肿瘤生长减少。此外,本研究表明,CC显著降低了细胞外信号调节激酶(ERK)和Akt的磷酸化,同时上调了p53、B细胞淋巴瘤2(Bcl-2)相关X蛋白、切割的半胱氨酸天冬氨酸蛋白酶-3和切割的聚二磷酸腺苷核糖聚合酶(PARP),下调了Bcl-2、半胱氨酸天冬氨酰蛋白酶-3和PARP。此外,使用PD98059,一种特异性促有丝分裂原活化的蛋白激酶抑制剂,增强了CC的促凋亡作用,这表明CC可能部分通过抑制ERK活性诱导癌症细胞凋亡。总体而言,本研究的结果表明,CC可能被开发为癌症患者的潜在抗癌治疗[3]。 |
||
动物实验 |
|
||
毒性/毒理 (Toxicokinetics/TK) |
Toxicity Summary
Chelerythrine is a potent, selective, and cell-permeable protein kinase C (PKC) inhibitor. It is also the major active natural product found in the plant Zanthoxylum clava-herculis, exhibiting anti-bacterial activity against Staphylococcus aureus. (Wikipedia) Chelerythrine is a selective inhibitor of group A and B PKC isoforms with an antitumor activity. Inhibition of PKC with chelerythrine chloride induces apoptosis by activation of a neutral sphingomyelinase, accumulation of ceramide, and depletion of sphingomyelin. Chelerythrine is at least 100-fold more selective for PKCs than for other kinases. Chelerythrine competes for the conserved catalytic sites of PKC and seems to be a potent and specific inhibitor of the group A and group B kinases. Chelerythrine exhibited cytotoxic activity against nine human tumor cell lines tested in vitro. Radioresistant and chemoresistant squamous cell carcinoma lines (HNSCC) undergo apoptosis rapidly after treatment with chelerythrine in vitro. Chelerythrine treatment of nude mice bearing SQ-20B HNSCC cells is associated with significant tumor growth delay. Also, treatment with chelerythrine resulted in minimal toxicity. mouse LD50 subcutaneous 95 mg/kg Planta Medica., 43(161), 1981 [PMID:7312984] mouse LD50 intravenous 18500 ug/kg Planta Medica., 43(161), 1981 [PMID:7312984] |
||
参考文献 |
|
||
其他信息 |
Chelerythrine chloride is a benzophenanthridine alkaloid.
A quaternary benzo [c] alkaloid chelerythrine (CHE), which is a traditional herbal prescription, has been used for the treatment of various inflammatory diseases. To gain insight into the anti-inflammatory effect and molecular mechanisms underlying the anti-inflammatory activity of CHE, we used experimentally induced mice endotoxic shock moled and lipopolysaccharide (LPS)-induced murine peritoneal macrophages to examine the anti-inflammatory function of CHE. CHE displayed significant anti-inflammatory effects in experimentally induced mice endotoxic shock model in vivo through inhibition of LPS-induced tumor necrosis factor-alpha (TNF-α) level and nitric oxide (NO) production in serum. Additionally, our data suggest that CHE treatment inhibits LPS-induced TNF-α level and NO production in LPS-induced murine peritoneal macrophages through selective inhibition of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) activation. Moreover, the effects of CHE on NO and cytokine TNF-α production can possibly be explained by the role of p38 MAPK and ERK1/2 in the regulation of inflammatory mediators expression.[1] Quaternary benzo[c]phenanthridine alkaloids sanguinarine and chelerythrine have been used in folk medicine for their wide range of useful properties. One of their major effect is also anti-inflammatory activity, that is not clarified in detail. This study focused on the ability of these alkaloids to modulate the gene expression of pro-inflammatory tumour necrosis factor α (TNF-α), monocyte chemoattractant protein 1 (MCP-1, also known as CCL-2), interleukin (IL)-6, IL-1β and anti-inflammatory cytokines IL-1 receptor antagonist (IL-1RA) and IL-10. The effect of these alkaloids was compared with that of conventional drug prednisone. Human monocyte-derived macrophages were pre-treated with alkaloids or prednisone and inflammatory reaction was induced by lipopolysaccharide. Changes of gene expression at the transcriptional level of mentioned cytokines were measured. In our study mainly affected pro-inflammatory cytokines were CCL-2 and IL-6. Two hours after LPS stimulation, cells influenced by sanguinarine and chelerythrine significantly declined the CCL-2 expression by a factors of 3.5 (p<0.001) and 1.9 (p<0.01); for those treated with prednisone the factor was 5.3 (p<0.001). Eight hours after LPS induction, both alkaloids significantly diminished the CCL-2 expression. The lower expression was found for sanguinarine--lower by a factor of 4.3 than for cells treated with the vehicle (p<0.001). Two hours after LPS stimulation, cells treated with sanguinarine decreased the IL-6 mRNA level by a factor of 3.9 (p<0.001) compared with cells treated with the vehicle. Chelerythrine decreased the level of IL-6 mRNA by a factor of 1.6 (p<0.001). Sanguinarine decreased gene expression of CCL-2 and IL-6 more than chelerythrine and its effect was quite similar to prednisone. Four hours after LPS stimulation, cells pre-treated with sanguinarine exhibited significantly higher expression (a factor of 1.7, p<0.001) of IL-1RA than cells without sanguinarine treatment. Our results help to clarify possible mechanisms of action of these alkaloids in the course of inflammation.[2] |
分子式 |
C21H18NO4.HCL
|
|
---|---|---|
分子量 |
384.83
|
|
精确质量 |
383.092
|
|
元素分析 |
C, 65.71; H, 4.73; Cl, 9.24; N, 3.65; O, 16.67
|
|
CAS号 |
3895-92-9
|
|
相关CAS号 |
Chelerythrine;34316-15-9; 478-03-5 (OH-); 34316-15-9; 3895-92-9 (chloride)
|
|
PubChem CID |
72311
|
|
外观&性状 |
Typically exists as Yellow to orange solids at room temperature
|
|
密度 |
1.36g/cm3
|
|
沸点 |
711.4ºC at 760 mmHg
|
|
熔点 |
195-205ºC
|
|
闪点 |
219.3ºC
|
|
折射率 |
1.681
|
|
LogP |
0.72
|
|
tPSA |
40.8
|
|
氢键供体(HBD)数目 |
0
|
|
氢键受体(HBA)数目 |
5
|
|
可旋转键数目(RBC) |
2
|
|
重原子数目 |
27
|
|
分子复杂度/Complexity |
516
|
|
定义原子立体中心数目 |
0
|
|
SMILES |
[Cl-].O1C([H])([H])OC2=C1C([H])=C1C(=C2[H])C([H])=C([H])C2=C3C([H])=C([H])C(=C(C3=C([H])[N+](C([H])([H])[H])=C21)OC([H])([H])[H])OC([H])([H])[H]
|
|
InChi Key |
WEEFNMFMNMASJY-UHFFFAOYSA-M
|
|
InChi Code |
InChI=1S/C21H18NO4.ClH/c1-22-10-16-13(6-7-17(23-2)21(16)24-3)14-5-4-12-8-18-19(26-11-25-18)9-15(12)20(14)22;/h4-10H,11H2,1-3H3;1H/q+1;/p-1
|
|
化学名 |
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。 |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 0.44 mg/mL (1.15 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 4.4mg/mL澄清的DMSO储备液加入到900μL 20%SBE-β-CD生理盐水中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 配方 2 中的溶解度: ≥ 0.44 mg/mL (1.15 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 4.4 mg/mL 澄清 DMSO 储备液加入900 μL 玉米油中,混合均匀。 View More
配方 3 中的溶解度: ≥ 0.43 mg/mL (1.12 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.5986 mL | 12.9928 mL | 25.9855 mL | |
5 mM | 0.5197 mL | 2.5986 mL | 5.1971 mL | |
10 mM | 0.2599 mL | 1.2993 mL | 2.5986 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。