规格 | 价格 | 库存 | 数量 |
---|---|---|---|
100mg |
|
||
500mg |
|
||
Other Sizes |
|
体外研究 (In Vitro) |
磷脂酰胆碱和鞘磷脂是体外细胞膜的两种重要成分,是胆碱的前体[3]。通过其代谢物甜菜碱(参与 S-腺苷甲硫氨酸合成途径),胆碱也是甲基的主要来源 [4]。
|
---|---|
体内研究 (In Vivo) |
使用口服管饲法提供酒石酸氢胆碱(300 毫克/千克,而不是 5 克/千克)。限制胆碱(300 mg/kg)的小鼠除了出现强烈的酮症和体重减轻外,还出现显着的肝脏脂肪变性、炎症和细胞损伤。当胆碱水平充足时,可以最大程度地减少中度酮症和肝脏脂肪的积累[4]。
|
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
Choline is absorbed from diet as such or as lecithin. Latter is hydrolyzed by intestinal mucosa to glycerophosphoryl choline, which either passes to liver to liberate choline or to peripheral tissues via intestinal lymphatics. /Choline/ Choline are absorbed via the portal circulation ... The liver takes up the majority of choline and stores it in the form of phosphatidylcholine and sphingomyelin. Kidney and brain also accumulate choline ... Some free choline is excreted with urine ... A specific carrier is needed for the transport of free choline across the blood-brain barrier, and the capacity is especially high in neonates. /Choline/ Free choline is transported across the blood-brain barrier at a rate that is proportional to serum choline level ... In advanced age ... brain choline uptake /is decr/ ... /Choline/ During pregnancy, large amt of choline are delivered to the fetus across the placenta and this depletes maternal stores. Choline concn in amniotic fluid is 10-fold greater than that in maternal blood. At birth, humans and other mammals have plasma choline concn that are much higher than those in adults ... In rats, the liver choline concn in late pregnancy decr to less than one-third that of nonpregnant females ... /Choline/ For more Absorption, Distribution and Excretion (Complete) data for CHOLINE BITARTRATE (8 total), please visit the HSDB record page. Metabolism / Metabolites Free choline is not fully absorbed, especially after large doses, and intestinal bacteria metabolize choline to trimethylamine. /Choline/ /The/ ability to form choline /de novo via the methylation of phosphatidylethanolamine using S-adenosylmethionine as the methyl donor, mostly in the liver,/ means that some of the demand for choline can ... be met using methyl groups derived from 1-carbon metabolism (via methyl-folate and methionine). Several vitamins (folate, vitamin B12, vitamin B6, and riboflavin) and the amino acid methionine interact with choline in 1-carbon metabolism ... Methionine, methyl-tetrahydrofolate (THF), and choline can be fungible sources of methyl groups. /Choline/ Before choline can be absorbed in the gut, some is metabolized by bacteria to form betaine and methylamines (which are not methyl donors) ... Although some free choline is excreted with urine, most is oxidized in the kidney to form betaine ... /Choline/ Acetylcholine is one of the most important neurotransmitters used by neurons in the memory centers of the brain (hippocampus and septum). Choline accelerates the synth and release of acetylcholine in nerve cells. Choline used by brain neurons is largely derived from membrane lecithin /(phosphatidylcholine)/, or from dietary intake of choline and lecithin ... Choline derived from lecithin may be especially important when extracellular choline is in short supply, as might be expected to occur in advanced age because of decr brain choline uptake ... /Choline/ For more Metabolism/Metabolites (Complete) data for CHOLINE BITARTRATE (6 total), please visit the HSDB record page. |
毒性/毒理 (Toxicokinetics/TK) |
Interactions
Methotrexate may diminish pools of all choline metabolites. Choline supplementation reverses fatty liver caused by methotrexate admin in rats. /Choline/ Repeated admin of choline chloride to female rats incr liver necrosis caused by carbon tetrachloride. This study was designed to examine the biochemical and embryotoxic interaction of excessive dietary vitamin A and deficiency of methylation pathway constituents, namely absence of folate and choline and a reduction of methionine. Simonsen albino rats were maintained for 36 days on a diet with either normal (4 IU per gram of diet) or excessive retinyl palmitate (RP) (100 or 1000 IU per gram of diet), and normal (2 ug folic acid, 5 mg methionine and 4.2 mg choline bitartrate per gram of diet) or absence of the three dietary factors. CD-1 mouse embryos were exposed to the diet from gestational day 0 to 8, and rat serum from day 8 to 10 during whole embryo culture. The high dose of RP induced 55.4% open anterior neuropores when methylation pathway constituents were included in the diet, but this same retinoid level produced only 12.5% embryos with this defect when these constituents were omitted. Acidic retinoid levels were low in serum (less than 5 ng/mL) via HPLC. Measurements of selected methylation and transsulfuration pathway components did not yield differences in these biochemical intermediates. Thus, dietary folate, choline and methionine facilitate the induction of retinoid-induced neural tube defects. |
参考文献 |
|
其他信息 |
A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism.
Mechanism of Action Several mechanisms are suggested for the cancer-promoting effect of a choline-devoid diet. These incl incr cell proliferation related to regeneration after parenchymal cell death occurs in the choline deficient liver, hypomethylation of DNA (alters expression of genes), reactive oxygen species leakage from mitochondria with incr lipid peroxidation in liver, activation of protein kinase C signaling due to accumulation of diacylglycerol in liver, mutation of the fragile histidine triad (FHIT) gene, which is a tumor suppressor gene, and defective cell-suicide (apoptosis) mechanisms. Loss of phposphatidylethanolamine N-methyl-transferase (PEMT) function may also contribute to malignant transformation of hepatocytes. /Choline/ Acetylcholine is one of the most important neurotransmitters used by neurons in the memory centers of the brain (hippocampus and septum). Choline accelerates the synth and release of acetylcholine in nerve cells. /Choline/ ... Choline deficiency in cell culture causes apoptosis or programmed cell death. This appears to be due to abnormalities in cell membrane phosphatidylcholine content and an incr in ceramide, a precursor, as well as a metabolite of sphingomyelin. Ceramide accumulation, which is caused by choline deficiency, appears to activate a caspase, a type of enzyme that mediates apoptosis. /Choline/ Therapeutic Uses Some clinical improvement with choline treatment has also been reported in huntington's chorea...in gilles de la tourette's disease, in friedreich's ataxia, & in presenile dementia ... /Choline/ A nutrient and/or dietary supplement food additive /EXPL THER/ Eight lithium-treated patients with DSM-IV bipolar disorder, rapid cycling type were randomly assigned to 50 mg/kg/day of choline bitartrate or placebo for 12 weeks. Brain purine, choline and lithium levels were assessed using 1H- and 7Li-MRS. Patients received four to six MRS scans, at baseline and weeks 2, 3, 5, 8, 10 and 12 of treatment (n = 40 scans). Patients were assessed using the Clinical Global Impression Scale (CGIS), the Young Mania Rating Scale (YRMS) and the Hamilton Depression Rating Scale (HDRS) at each MRS scan. ... There were no significant differences in change-from-baseline measures of CGIS, YMRS, and HDRS, brain choline/creatine ratios, and brain lithium levels over a 12-week assessment period between the choline and placebo groups or within each group. However, the choline treatment group showed a significant decrease in purine metabolite ratios from baseline (purine/n-acetyl aspartate: coef = -0.08, z = -2.17, df = 22, p = 0.030; purine/choline: coef = -0.12, z = -1.97, df = 22, p = 0.049) compared to the placebo group, controlling for brain lithium level changes. Brain lithium level change was not a significant predictor of purine ratios. ... The current study reports that oral choline supplementation resulted in a significant decrease in brain purine levels over a 12-week treatment period in lithium-treated patients with DSM-IV bipolar disorder, rapid-cycling type, which may be related to the anti-manic effects of adjuvant choline. This result is consistent with mitochondrial dysfunction in bipolar disorder inadequately meeting the demand for increased ATP production as exogenous oral choline administration increases membrane phospholipid synthesis. /EXPL THER/ ... Choline bitartrate was given openly to 6 consecutive lithium-treated outpatients with rapid-cycling bipolar disorder. Five patients also underwent brain proton magnetic resonance spectroscopy. Five of 6 rapid-cycling patients had a substantial reduction in manic symptoms, and 4 patients had a marked reduction in all mood symptoms during choline therapy. The patients who responded to choline all exhibited a substantial rise in the basal ganglia concentration of choline-containing compounds. Choline was well tolerated in all cases. Choline, in the presence of lithium, was a safe and effective treatment for 4 of 6 rapid-cycling patients in our series. A hypothesis is suggested to explain both lithium refractoriness in patients with bipolar disorder and the action of choline in mania, which involves the interaction between phosphatidylinositol and phosphatidylcholine second-messenger systems. For more Therapeutic Uses (Complete) data for CHOLINE BITARTRATE (6 total), please visit the HSDB record page. |
分子式 |
C9H19NO7
|
---|---|
分子量 |
253.2497
|
精确质量 |
253.116
|
CAS号 |
87-67-2
|
相关CAS号 |
Choline chloride;67-48-1;Choline theophyllinate;4499-40-5
|
PubChem CID |
6900
|
外观&性状 |
White to off-white solid powder
|
密度 |
1.47 g/cm3
|
沸点 |
399.3ºC at 760 mmHg
|
熔点 |
151-153°C
|
闪点 |
209.4ºC
|
tPSA |
138.12
|
氢键供体(HBD)数目 |
4
|
氢键受体(HBA)数目 |
7
|
可旋转键数目(RBC) |
4
|
重原子数目 |
17
|
分子复杂度/Complexity |
193
|
定义原子立体中心数目 |
2
|
SMILES |
C[N+](C)(C)CCO.[C@@H]([C@H](C(=O)[O-])O)(C(=O)O)O
|
InChi Key |
QWJSAWXRUVVRLH-LREBCSMRSA-M
|
InChi Code |
InChI=1S/C5H14NO.C4H6O6/c1-6(2,3)4-5-7;5-1(3(7)8)2(6)4(9)10/h7H,4-5H2,1-3H3;1-2,5-6H,(H,7,8)(H,9,10)/q+1;/p-1/t;1-,2-/m.1/s1
|
化学名 |
2-hydroxyethyl(trimethyl)azanium;(2R,3R)-2,3,4-trihydroxy-4-oxobutanoate
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
H2O : ~120 mg/mL (~473.84 mM)
DMSO : ~55 mg/mL (~217.18 mM) |
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.75 mg/mL (10.86 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 27.5 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.75 mg/mL (10.86 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 27.5mg/mL澄清的DMSO储备液加入到900μL 20%SBE-β-CD生理盐水中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.75 mg/mL (10.86 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: 100 mg/mL (394.87 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶. 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 3.9487 mL | 19.7433 mL | 39.4867 mL | |
5 mM | 0.7897 mL | 3.9487 mL | 7.8973 mL | |
10 mM | 0.3949 mL | 1.9743 mL | 3.9487 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。