规格 | 价格 | 库存 | 数量 |
---|---|---|---|
250mg |
|
||
500mg |
|
||
1g |
|
||
2g |
|
||
5g |
|
||
10g |
|
||
Other Sizes |
|
靶点 |
Bcr-Abl (IC50 = 1 nM); Src (IC50 = 0.5 nM); lck (IC50 = 0.4 nM); Yes (IC50 = 0.5 nM); c-kit (IC50 = 5 nM); PDGFRβ (IC50 = 28 nM); p38 (IC50 = 100 nM); Her1 (IC50 = 180 nM); Her2 (IC50 = 710 nM); FGFR-1 (IC50 = 880 nM); MEK (IC50 = 1700 nM)
|
||
---|---|---|---|
体外研究 (In Vitro) |
体外活性:达沙替尼在抑制表达野生型 Bcr-Abl 和 Bcr-Abl 突变体(T315I 除外)的 Ba/F3 细胞增殖方面比伊马替尼更有效。相对于伊马替尼,达沙替尼的效力增加了两倍(约 325 倍)。 Dasatinib 在很窄的范围内有效抑制野生型 Abl 激酶和除 T315I 之外的所有突变体。达沙替尼直接靶向野生型和突变型 Abl 激酶结构域,并以浓度依赖性方式抑制自身磷酸化和底物磷酸化。与伊马替尼相比,达沙替尼针对表达野生型 Bcr-Abl 的细胞显示出 325 倍的效力。 TgE 骨髓细胞集落百分比从未处理孔中的 100% 降至达沙替尼处理孔中的 4.12%。在达沙替尼存在的情况下,WT 和 TgE 骨髓细胞形成的集落百分比差异具有统计学意义。 LMP2A 的表达能够促进 B 淋巴细胞存活和增殖,可通过达沙替尼靶向 Lyn 和/或 c-Abl 激酶来抑制这种作用。达沙替尼治疗可抑制甲状腺癌细胞的 Src 信号传导、降低生长并诱导细胞周期停滞和细胞凋亡。使用递增剂量的达沙替尼(0.019 μM 至 1.25 μM)治疗 3 天,在低纳摩尔浓度下可抑制 C643、TPC1、BCPAP 和 SW1736 细胞系的生长约 50%,而需要更高的浓度才能抑制K1细胞系。用 10 nM 或 50 nM 达沙替尼治疗导致 BCPAP、SW1736 和 K1 细胞中 G1 细胞群的细胞增加 9-22%,而 S 期细胞的百分比相应减少 7-18%。激酶测定:使用野生型和突变型谷胱甘肽S-转移酶(GST)-Abl融合蛋白(c-Abl氨基酸220-498)进行激酶测定。 GST-Abl 融合蛋白在使用前从谷胱甘肽-Sepharose 珠中释放; ATP浓度为5μM。在用于激酶自磷酸化和体外肽底物磷酸化测定之前,GST-Abl 激酶结构域融合蛋白需用 LAR 酪氨酸磷酸酶处理。 30 °C 孵育 1 小时后,添加钒酸钠 (1 mM) 可灭活 LAR 磷酸酶。通常使用磷酸酪氨酸特异性抗体 4G10 进行免疫印迹分析,比较未处理的 GST-Abl 激酶与去磷酸化的 GST-Abl 激酶,以确认酪氨酸残基完全 (>95%) 去磷酸化,并使用 c-Abl 抗体 CST 2862 来确认 GST-Abl 的相同负载激酶。对于突变型 T315I,达沙替尼浓度范围扩展至 1,000 nM。这些相同的抑制剂浓度用于体外肽底物磷酸化测定。这三种抑制剂在相同的浓度范围内针对 GST-Src 激酶和 GST-Lyn 激酶进行了测试。细胞测定:将 Ba/F3 细胞系一式三份接种,并与浓度递增的达沙替尼一起孵育 72 小时。使用基于甲硫代磺酸盐的活力测定来测量增殖。 IC 50 和IC 90 值报告为一式四份进行的三个独立实验的平均值。抑制剂浓度范围为 0 nM 至 32 nM(达沙替尼)。对于突变型 T315I,达沙替尼浓度范围扩展至 200 nM。
|
||
体内研究 (In Vivo) |
达沙替尼逆转 LMP2A/MYC 双转基因小鼠的脾肿大。达沙替尼专门阻止表达 LMP2A 的骨髓 B 细胞集落形成,并减少 TgE 小鼠的脾脏大小。与对照组相比,达沙替尼治疗的 Tg6/λ-MYC 小鼠的脾脏质量显着减少。达沙替尼抑制 LMP2A/MYC 双转基因小鼠的淋巴结病。达沙替尼可逆转植入 LMP2A/MYC 双转基因小鼠肿瘤细胞的 Rag1KO 小鼠的脾肿大。达沙替尼疗法可抑制表达 LMP2A 的 B 淋巴细胞肿瘤中的 Lyn 磷酸化。
|
||
酶活实验 |
使用野生型和突变型谷胱甘肽 S-转移酶 (GST)-Abl 融合蛋白(c-Abl 氨基酸 220-498)进行激酶测定。使用前,GST-Abl 融合蛋白从谷胱甘肽-Sepharose 珠中释放出来;存在 5 μM ATP。 GST-Abl 激酶结构域融合蛋白在用于激酶自磷酸化和体外肽底物磷酸化测定之前,先用 LAR 酪氨酸磷酸酶处理。在 30°C 孵育 1 小时后,添加钒酸钠 (1 mM) 以灭活 LAR 磷酸酶。使用磷酸酪氨酸特异性抗体 4G10 确认酪氨酸残基完全 (>95%) 去磷酸化,使用 c-Abl 抗体 CST 2862 确认 GST-Abl 激酶的负载量相等,通过免疫印迹分析比较未处理的 GST-Abl 激酶与去磷酸化的 GST-Abl 激酶常规执行。突变型 T315I 的达沙替尼浓度范围增加至 1,000 nM。体外肽底物磷酸化测定采用相同浓度的抑制剂。在相同的浓度范围内检查这三种抑制剂对 GST-Src 激酶和 GST-Lyn 激酶的作用。
|
||
细胞实验 |
三种子 Ba/F3 细胞系以不断增加的达沙替尼浓度培养 72 小时。基于甲硫代磺酸盐的活力测定用于量化增殖。 IC50 和 IC90 值以三次独立、四次实验运行的平均值给出。抑制剂浓度范围(达沙替尼)为 0 nM 至 32 nM。对于突变型 T315I,达沙替尼浓度范围扩大至 200 nM。
|
||
动物实验 |
|
||
参考文献 | |||
其他信息 |
Imatinib, a Bcr-Abl tyrosine kinase inhibitor, is a highly effective therapy for patients with chronic myelogenous leukemia (CML). Despite durable responses in most chronic phase patients, relapses have been observed and are much more prevalent in patients with advanced disease. The most common mechanism of acquired imatinib resistance has been traced to Bcr-Abl kinase domain mutations with decreased imatinib sensitivity. Thus, alternate Bcr-Abl kinase inhibitors that have activity against imatinib-resistant mutants would be useful for patients who relapse on imatinib therapy. Two such Bcr-Abl inhibitors are currently being evaluated in clinical trials: the improved potency, selective Abl inhibitor AMN107 and the highly potent dual Src/Abl inhibitor BMS-354825. In the current article, we compared imatinib, AMN107, and BMS-354825 in cellular and biochemical assays against a panel of 16 kinase domain mutants representing >90% of clinical isolates. We report that AMN107 and BMS-354825 are 20-fold and 325-fold more potent than imatinib against cells expressing wild-type Bcr-Abl and that similar improvements are maintained for all imatinib-resistant mutants tested, with the exception of T315I. Thus, both inhibitors hold promise for treating imatinib-refractory CML.[1]
Mastocytosis is associated with an activating mutation in the KIT oncoprotein (KITD816V) that results in autophosphorylation of the KIT receptor in a ligand-independent manner. This mutation is inherently resistant to imatinib and, to date, there remains no effective curative therapy for systemic mastocytosis associated with KITD816V. Dasatinib (BMS-354825) is a novel orally bioavailable SRC/ABL inhibitor that has activity against multiple imatinib-resistant BCR-ABL isoforms in vitro that is presently showing considerable promise in early-phase clinical trials of chronic myeloid leukemia (CML). Pharmacokinetic analysis suggests that high nanomolar concentrations of dasatinib can be achieved safely in humans. In this study, we demonstrate significant inhibitory activity of dasatinib against both wild-type KIT and the KITD816V mutation in the nanomolar range in in vitro and cell-based kinase assays. Additionally, dasatinib leads to growth inhibition of a KITD816V-harboring human masto-cytosis cell line. Significantly, dasatinib selectively kills primary neoplastic bone marrow mast cells from patients with systemic mastocytosis while sparing other hematopoietic cells. Computer modeling suggests that the KITD816V mutation destabilizes the inactive conformation of the KIT activation loop to which imatinib binds, but it is not predicted to impair binding of KIT by dasatinib. Based upon our results, further evaluation of dasatinib for the treatment of systemic masto-cytosis in clinical trials is warranted. Moreover, dasatinib may be of clinical utility in other disease settings driven by activating KIT mutations.[2] Epstein-Barr virus (EBV) infection and latency has been associated with malignant diseases including nasopharyngeal carcinoma, Hodgkin lymphoma, Burkitt lymphoma, and immune deficiency associated lymphoproliferative diseases. EBV-encoded latent membrane protein 2A (LMP2A) recruits Lyn and Syk kinases via its SH2-domain binding motifs, and modifies their signaling pathways. LMP2A transgenic mice develop hyperproliferative bone marrow B cells and immature peripheral B cells through modulation of Lyn kinase signaling. LMP2A/λ-MYC double transgenic mice develop splenomegaly and cervical lymphomas starting at 8 weeks of age. We reasoned that targeting Lyn in LMP2A-expressing B cells with dasatinib would provide a therapeutic option for EBV-associated malignancies. Here, we show that dasatinib inhibits B cell colony formation by LMP2A transgenic bone marrow cells, and reverses splenomegaly and tumor growth in both a pre-tumor and a syngeneic tumor transfer model of EBV-associated Burkitt lymphoma. Our data support the idea that dasatinib may prove to be an effective therapeutic molecule for the treatment of EBV-associated malignancies.[3] |
分子式 |
C22H26CLN7O2S.HCL
|
---|---|
分子量 |
524.47
|
精确质量 |
523.132
|
CAS号 |
854001-07-3
|
相关CAS号 |
Dasatinib;302962-49-8;Dasatinib monohydrate;863127-77-9;Dasatinib-d8;1132093-70-9
|
PubChem CID |
11466607
|
外观&性状 |
White to off-white solid powder
|
LogP |
4.264
|
tPSA |
134.75
|
氢键供体(HBD)数目 |
4
|
氢键受体(HBA)数目 |
9
|
可旋转键数目(RBC) |
7
|
重原子数目 |
34
|
分子复杂度/Complexity |
642
|
定义原子立体中心数目 |
0
|
SMILES |
Cl.O=C(C1=CN=C(NC2C=C(N3CCN(CCO)CC3)N=C(C)N=2)S1)NC1C(C)=CC=CC=1Cl
|
InChi Key |
MSCGWICDJYLQOJ-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C22H26ClN7O2S.ClH/c1-14-4-3-5-16(23)20(14)28-21(32)17-13-24-22(33-17)27-18-12-19(26-15(2)25-18)30-8-6-29(7-9-30)10-11-31;/h3-5,12-13,31H,6-11H2,1-2H3,(H,28,32)(H,24,25,26,27);1H
|
化学名 |
N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-1,3-thiazole-5-carboxamide;hydrochloride
|
别名 |
BMS-354825 HCl; BMS354825; 854001-07-3; Dasatinib (hydrochloride); Dasatinib HCl; N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-1,3-thiazole-5-carboxamide;hydrochloride; N-(2-Chloro-6-methylphenyl)-2-((6-(4-(2-hydroxyethyl)piperazin-1-yl)-2-methylpyrimidin-4-yl)amino)thiazole-5-carboxamide hydrochloride; BMS 354825 hydrochloride; SCHEMBL1705152; BMS354825. Dasatinib HCl; Trade name: Sprycel
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 3.33 mg/mL (6.35 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 33.3 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 3.33 mg/mL (6.35 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 33.3 mg/mL 澄清 DMSO 储备液加入 900 μL 20% SBE-β-CD 生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 3.33 mg/mL (6.35 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: 4% DMSO+30% PEG 300+5% Tween 80+ddH2O: 5 mg/mL 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 1.9067 mL | 9.5334 mL | 19.0669 mL | |
5 mM | 0.3813 mL | 1.9067 mL | 3.8134 mL | |
10 mM | 0.1907 mL | 0.9533 mL | 1.9067 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT01660971 | Active Recruiting |
Drug: Dasatinib Drug: Erlotinib Hydrochloride |
Stage III Pancreatic Cancer AJCC v6 and v7 Recurrent Pancreatic Carcinoma |
National Cancer Institute (NCI) |
July 30, 2012 | Phase 1 |
NCT01746836 | Recruiting | Drug: Ponatinib Hydrochloride Other: Quality-of-Life Assessment |
Philadelphia Chromosome Positive, BCR-ABL1 Positive Chronic Myelogenous Leukemia Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive |
M.D. Anderson Cancer Center | January 17, 2013 | Phase 2 |
NCT03654768 | Active Recruiting |
Drug: Dasatinib Drug: Bosutinib |
Chronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive |
SWOG Cancer Research Network | October 24, 2018 | Phase 2 |
NCT01398046 | Completed | Drug: Dasatinib plus Rabeprazole Drug: Dasatinib |
Healthy | University of California, San Francisco |
August 2011 | Phase 1 |
NCT01238211 | Completed | Drug: Dasatinib Drug: Cytarabine |
Secondary Acute Myeloid Leukemia Acute Myeloid Leukemia |
National Cancer Institute (NCI) |
December 14, 2010 | Phase 2 |