Dibutyryl-cAMP (Bucladesine sodium)

别名: dbcAMP; DC-2797; Dibutyryl-cAMP sodium salt; DC2797; Sodium dibutyryl cAMP; DC 2797; Bucladesine sodium; DbcAMP sodium; Actosin; Sodium Dibutyryl cAMP; 16980-89-5; bucladesine; Bucladesine sodium salt; Bucladesine (sodium); Dibutyryl-cAMP, sodium salt; Bucladesine sodium [JAN]; Dibutyryl-cAMP sodium salt; Cyclic dibutyryl-AMP sodium salt 二丁酰环磷腺苷钠; N6,2'-O-二丁酰腺苷 3',5'-单磷酸钠盐; N6,2''-O-二丁酰基腺苷3'',5''-环磷酸 钠盐; 2-丁酰环磷腺酐钠; N6,2′-O-二丁酰基腺苷3′,5′-环磷酸 钠盐; N6,2'-O-Dibutyryladenosine 3',5'-Cyclic Monophosphate Sodium Salt N6,2'-O-二丁酰腺苷 3',5'-单磷酸钠盐; N6,2'-O-二丁酰基腺苷3',5'-环磷酸 钠盐;N6,2''-O-二丁酰腺苷 3'',5''-单磷酸钠盐; 布拉地辛; 布拉地新; 布拉地新钠盐; 二丁酰环磷腺苷钠盐;布拉地新钠;二丁酰 cAMP 钠盐 二丁酰环磷腺苷 钠盐 布拉地新 钠盐;二丁酰cAMP钠盐;联丁酰基cAMP钠盐;二丁酰-3‘,5'-环磷腺苷单钠盐;二丁酰 cAMP 钠盐;二丁酰环磷腺苷 钠盐;布拉地新 钠盐;二丁酰环磷腺甙/布拉地新钠盐
目录号: V1846 纯度: =98.51%
布克拉地辛钠(也称为二丁酰-cAMP 钠)是布克拉地辛的钠盐,是一种细胞渗透性 PKA 激活剂和模拟内源性 cAMP 作用的 cAMP 类似物。
Dibutyryl-cAMP (Bucladesine sodium) CAS号: 16980-89-5
产品类别: PKA
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10mg
50mg
100mg
250mg
500mg
1g
2g
5g
10g
Other Sizes

Other Forms of Dibutyryl-cAMP (Bucladesine sodium):

  • 布拉地新钙(DC2797)
  • 布拉地新(二丁基cAMP)
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
顾客使用InvivoChem 产品二丁酰环磷腺苷钠发表5篇科研文献
纯度/质量控制文件

纯度: ≥98%

纯度: ≥98%

纯度: ≥98%

纯度: =98.51%

产品描述
布克拉地辛钠(也称为二丁酰-cAMP 钠)是布克拉地辛的钠盐,是一种细胞渗透性 PKA 激活剂和模拟内源性 cAMP 作用的 cAMP 类似物。它是一种环核苷酸衍生物(结构与cAMP相似),也是一种磷酸二酯酶抑制剂。二丁酰-cAMP 优先激活 cAMP 依赖性蛋白激酶。该产品由于细胞内和细胞外酯酶的作用而释放丁酸盐。丁酸盐被证明具有独特的生物效应。该化合物可用于多种研究应用,因为它模仿 cAMP,并且在实验条件下添加到细胞中时可以诱导正常的生理反应。
生物活性&实验参考方法
靶点
- Protein Kinase A (PKA) [5]
- Phosphodiesterase (PDE) [2]
体外研究 (In Vitro)
用布克拉地辛(二丁酰环 AMP;dbcAMP)处理 PC12 细胞后,胆碱乙酰转移酶(ChAT)和囊泡乙酰胆碱转运蛋白(VAChT)的 mRNA 量增加了近四倍。布克拉地辛还可以增加 PKA 和 ChAT 活性[4]。
- 胆碱能基因调控:在PC12细胞中,丁基环磷腺苷(1 mM)诱导胆碱乙酰转移酶(CHAT)和囊泡乙酰胆碱转运体(VAChT)mRNA水平增加4倍,与PKA活性增强相关[5]
- 抗炎活性:在RAW264.7巨噬细胞中,丁基环磷腺苷(28.9 μM)抑制LPS诱导的TNF-α产生达50%,通过激活cAMP/PKA通路发挥抗炎作用[2]
- 凋亡抑制:在肝细胞中,丁基环磷腺苷(10 μM)通过下调FADD表达减少TNF-α诱导的凋亡达60%[2]
体内研究 (In Vivo)
将Bucladesine sodium注射到雄性 Albino-Wistar 大鼠海马内的 CA1 区已被证明可以增强迷宫任务中的空间记忆。当双侧输注 10 μM 和 100 μM 布Bucladesine sodium时,逃避潜伏期和旅程距离显着缩短(表明空间记忆得到改善)。Bucladesine sodium通过激活 PKA 和诱导 cAMP/PKA 通路来增强空间记忆的保存[1]。
训练后海马内输注尼古丁-布氯地胺联合对大鼠空间记忆保留有协同增强作用[1]。
稳定的环磷酸腺苷类似物二丁基环磷酸腺苷(bucladesine)在急性皮肤炎症模型中有活性[2]。
Bucladesine sodium作为环腺苷单磷酸类似物、磷酸二酯酶和蛋白激酶A抑制剂对急性疼痛的影响[4]。
载药对正常和损伤大鼠皮肤Bucladesine sodium(二丁基环AMP)经皮吸收的影响[5]。
- 空间记忆增强:大鼠海马内注射丁基环磷腺苷(10–100 μM)后,在Morris水迷宫中逃避潜伏期缩短30%,游泳距离减少25%,提示空间记忆保留改善。该效应可被PKA抑制剂H-89逆转[1]
- 皮肤炎症模型:小鼠局部应用丁基环磷腺苷(1.5%乳膏)显著减少花生四烯酸诱导的耳肿胀40%(p < 0.01),效果与2.5%酮洛芬凝胶相当。重复给药(挑战前7小时和3小时各一次)进一步增强疗效[3]
- 急性疼痛模型:小鼠腹腔注射丁基环磷腺苷(600 nM/只)逆转氯化锌诱导的痛觉过敏,镇痛作用持续≥6小时。该效应可被PKA拮抗剂Rp-cAMP阻断[4]
酶活实验
PKA试验[4]
用10 mM磷酸钠缓冲液,pH 7.4, 0.15 M NaC1洗涤细胞2次,然后用1 ml相同的缓冲液从培养板上刮下。离心收集细胞,在细胞匀浆缓冲液(50 mMTris-HC1, pH 7.4, 1 mM EDTA, 1 mM二硫苏糖醇(DTT), 50 mM胰肽,0.1 mM苯基甲基磺酰氟)中进行短暂超声匀浆。在4°c, 14000 rpm的微离心机中离心20 mm,去除颗粒部分。采用froskoski(1983)的方法,使用合成肽底物Leu-Arg-ArgAla-Ser-Leu-Gly (Kemptide),在上清液中测量PKA活性。反应混合物为50 ~。含有细胞裂解液,终浓度为25 mM Tris-HC1缓冲液(pH7.4), 5 mM醋酸镁,5 mM DTT, 5 mM cAMP, 20,~iMKemptide, 0.25 mM异丁基甲基黄嘌呤,0.1 mM [y- 32P I ATP (200 cpm/pmol),当添加20,uM PKA肽抑制剂5-24时。在30°温度下,用50jtl的7.5 mm磷酸终止反应10 mm。将50微升反应混合物放在P81过滤器上,用75 mM磷酸洗涤5次,并按前面描述的计数。PKA肽抑制剂5-24存在与不存在时的活性差异用于计算PKA活性。
PKC检测[4]
按照pka实验的描述制备细胞裂解物。反应液为50 j.el,终浓度为25 mM Tris-HC1缓冲液(pH 7.4), 5 mM醋酸镁,5 mM DTT, 20 ~。tM合成底物(Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala-LysLys), 0.25 mM异丁基甲基黄嘌呤,0.1 mM [y32p] ATP (200 cpm/pmol)。反应在30°C下孵育10 mm,用磷酸终止,并按照PKA试验的描述进行分析。作为对照,特异性PKC肽抑制剂19-36,在20。用tM对细胞提取物的活性有90%以上的抑制作用。
细胞实验
囊泡乙酰胆碱转运体(VAChT)基因和胆碱乙酰转移酶(ChAT)基因构成胆碱能基因座。我们研究了环腺苷酸依赖性蛋白激酶(PKA)在大鼠嗜铬细胞瘤细胞系PC12和PC12 PKA缺陷突变体中对这些基因的协同调节。二丁基环腺苷酸(dbcAMP)处理PC12细胞后,ChAT和VAChT mRNA均增加了约四倍。dbcAMP也能提高ChAT和PKA的活性。PKA缺陷细胞系中ChAT和VAChT mRNA的基础水平均比野生型PC12细胞低约6倍,并且通过添加dbcAMP诱导不到两倍。PKA的特异性抑制剂H-89和H-9将ChAT和VAChT mRNA水平降低到未处理细胞的约三分之一,ChAT活性降低到未治疗PC12细胞的约四分之一。激活PKA II型而不是PKA I型,使ChAT活性增加约三倍。报告基因构建体的分析表明PKA影响胆碱能基因位点上游位点的基因转录。这些结果表明,ChAT和VAChT基因的表达在转录水平上受到协同调节,特异性涉及PKA II的信号通路在这一过程中发挥着重要作用[4]。
- CHAT/VAChT mRNA诱导实验:PC12细胞经丁基环磷腺苷(1 mM)处理24小时后,提取总RNA,通过RT-PCR定量CHAT/VAChT mRNA水平。以GAPDH为内参,与对照组比较倍数变化[5]
- TNF-α抑制实验:RAW264.7细胞经丁基环磷腺苷(1–100 μM)预处理1小时,再用LPS(1 μg/mL)刺激4小时。通过ELISA检测上清液中TNF-α水平[2]
动物实验
In the present study, we wished to test the hypothesis that intrahippocampal infusion of dibutyryl cyclic AMP (DB-cAMP also called bucladesine), a membrane permeable selective activator of PKA, into the CA1 region can cause an improvement in spatial memory in this maze task. Indeed, bilateral infusion of 10 and 100 microM bucladesine (but not 1 and 5 microM doses) led to a significant reduction in escape latency and travel distance (showing an improvement in spatial memory) compared to the control. Also, bilateral infusion of 0.5 microg nicotine or 1 microM bucladesine alone did not lead to an improvement in spatial memory. However, such bilateral infusion of bucladesine at 1 and 5 microM concentrations infused within minutes after 0.5 microg nicotine infusion improved spatial memory retention. Taken together, our data suggest that intrahippocampal bucladesine infusions improve spatial memory retention in male rats and that bucladesine can interact synergistically with nicotine to improve spatial memory.[1]
In the current study, a novel water free emulsion containing bucladesine was evaluated for anti-inflammatory effects. In the arachidonic acid induced ear oedema model in mice, single or multiple administration of an emulsion containing 1.5% was capable of significantly reducing the inflammatory oedema. The data indicate that bucladesine represents an interesting treatment option for skin diseases where an anti-inflammatory activity is indicated. Due to the established clinical safety, this agent may bridge the gap between potent agents such as glucocorticoids or calcineurin inhibitors and emollients without active compounds.[2]
Here, we studied the effect of H-89 (protein kinase A inhibitor), bucladesine (Db-cAMP) (membrane-permeable analog of cAMP), and pentoxifylline (PTX; nonspecific phosphodiesterase (PDE) inhibitor) on pain sensation. Different doses of H-89 (0.05, 0.1, and 0.5 mg/100 g), PTX (5, 10, and 20 mg/100 g), and Db-cAMP (50, 100, and 300 nm/mouse) were administered intraperitoneally (I.p.) 15 min before a tail-flick test. In combination groups, we injected the first and the second compounds 30 and 15 min before the tail-flick test, respectively. I.p. administration of H-89 and PTX significantly decreased the thermal-induced pain sensation in their low applied doses. Db-cAMP, however, decreased the pain sensation in a dose-dependent manner. The highest applied dose of H-89 (0.5 mg/100 g) attenuated the antinociceptive effect of Db-cAMP in doses of 50 and 100 nm/mouse. Surprisingly, Db-cAMP decreased the antinociceptive effect of the lowest dose of H-89 (0.05 mg/100 g). All applied doses of PTX reduced the effect of 0.05 mg/100 g H-89 on pain sensation; however, the highest dose of H-89 compromised the antinociceptive effect of 20 mg/100 g dose of PTX. Co-administration of Db-cAMP and PTX increased the antinociceptive effect of each compound on thermal-induced pain. In conclusion, PTX, H-89, and Db-cAMP affect the thermal-induced pain by probably interacting with intracellular cAMP and cGMP signaling pathways and cyclic nucleotide-dependent protein kinases.[3]
Bucladesine, sodium N6,2'-O-dibutyryl cyclic 3',5' adenosine monophosphate (DBcAMP), which is effective for the treatment of chronic skin ulcers including decubitus ulcer, was evaluated for percutaneous absorption in rats with normal skin, stripped skin and full-thickness abrasion models. Percutaneous absorption from aqueous solution or ointment was very low in intact skin. When the aqueous solution was applied to the site where the skin had been excised, DBcAMP was absorbed very rapidly and almost completely. In the case of stripped skin, DBcAMP was absorbed rapidly but slower than in the full-thickness abrasion model. In both damages skin models, a better absorption profile was obtained with the polyethylene glycol (PEG) than the petrolatum ointment and DBcAMP was released continuously from the PEG ointment, indicating that this ointment is suitable for the treatment of ulcers of the skin. The percutaneous absorption from stripped skin was considerably influenced by the powder formulation. It is appropriate to evaluate the bioavailability in damaged skin models for a drug, such as DBcAMP, which is used in the treatment of skin ulcer.[5]
- Memory Retention Study: Male Wistar rats (250–300 g) received bilateral intrahippocampal infusions of Bucladesine (10 or 100 μM in 0.9% saline, 0.5 μL/site) immediately after training. Memory retention was assessed 24 h later using a Morris water maze with 60-s trial duration and 4 trials/day [1]
- Skin Inflammation Model: Hairless mice received topical Bucladesine cream (0.5% or 1.5%) on both ears 3 h before arachidonic acid (100 μL of 10% solution) application. Ear thickness was measured with a caliper before and 60 min after challenge [3]
- Acute Pain Model: Mice were injected intraperitoneally with Bucladesine (600 nM/mouse) or vehicle. Pain sensitivity was evaluated using a Randall-Selitto paw pressure test at 0, 1, 3, and 6 h post-injection [4]
For topical administration of bucladesine as 5% solution, 20 μl of drug or vehicle solution was administered onto the outer surface of both, left and right ears each, 60 min prior to arachidonic acid challenge. The inflammatory response was induced by administration of 20 μl arachidonic acid (Sigma-Aldrich, Munich, Germany; 5% in acetone) on the outer surface of left ears. The right ears were treated with acetone only to determine the individual differences in ear thicknesses.
Na ve male Albino Swiss mice
药代性质 (ADME/PK)
- Percutaneous Absorption: In rats, Bucladesine showed minimal absorption through intact skin (permeation rate <0.1 μg/cm²/h). However, in damaged skin (full-thickness abrasion), absorption increased significantly with PEG ointment (permeation rate 2.5 μg/cm²/h), achieving 80% systemic exposure within 2 h [2]
- Metabolism: Bucladesine is rapidly hydrolyzed by esterases to butyric acid and cAMP. The half-life of cAMP in plasma is approximately 15 min, with renal excretion as the primary elimination route [2]
毒性/毒理 (Toxicokinetics/TK)
rat LD50 oral >5 gm/kg
rat LD50 subcutaneous 487 mg/kg
rat LD50 intravenous 448 mg/kg
rat LD50 intraperitoneal
参考文献

[1]. Post-training intrahippocampal infusion of nicotine-bucladesine combination causes a synergistic enhancement effect on spatial memory retention in rats. Eur J Pharmacol, 2007. 562(3): p. 212-20.

[2]. Effect of vehicles on percutaneous absorption of bucladesine (dibutyryl cyclic AMP) in normal and damaged rat skin. Biol Pharm Bull, 1995. 18(11): p. 1539-43.

[3]. The stable cyclic adenosine monophosphate analogue, dibutyryl cyclo-adenosine monophosphate (bucladesine), is active in a model of acute skin inflammation. Arch Dermatol Res, 2012 May;304(4):313-7.

[4]. Effect of bucladesine, pentoxifylline, and H-89 as cyclic adenosine monophosphate analog, phosphodiesterase, and protein kinase A inhibitor on acute pain. Fundam Clin Pharmacol. 2017 Aug;31(4):411-419.

[5]. The cholinergic gene locus is coordinately regulated by protein kinase A II in PC12 cells. J Neurochem. 1998 Sep;71(3):1118-26.

其他信息
Bucladesine sodium is a 3',5'-cyclic purine nucleotide.
A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed)
See also: Bucladesine (annotation moved to).
We previously had shown that bilateral intrahippocampal infusion of 1 microg nicotine (but not 0.5 microg dose) led to an improvement in spatial memory retention in the Morris water maze task in male rats. We also reported that a similar type of bilateral infusion of H89, a protein kinase AII (PKA II) inhibitor, caused a deficit in spatial memory retention. In the present study, we wished to test the hypothesis that intrahippocampal infusion of dibutyryl cyclic AMP (DB-cAMP also called bucladesine), a membrane permeable selective activator of PKA, into the CA1 region can cause an improvement in spatial memory in this maze task. Indeed, bilateral infusion of 10 and 100 microM bucladesine (but not 1 and 5 microM doses) led to a significant reduction in escape latency and travel distance (showing an improvement in spatial memory) compared to the control. Also, bilateral infusion of 0.5 microg nicotine or 1 microM bucladesine alone did not lead to an improvement in spatial memory. However, such bilateral infusion of bucladesine at 1 and 5 microM concentrations infused within minutes after 0.5 microg nicotine infusion improved spatial memory retention. Taken together, our data suggest that intrahippocampal bucladesine infusions improve spatial memory retention in male rats and that bucladesine can interact synergistically with nicotine to improve spatial memory.[1]
Anti-inflammatory therapeutic options for the topical treatment of skin diseases with inflammatory or allergic contribution are mostly limited to topical glucocorticoids and calcineurin inhibitors. Both compound classes induce adverse effects. Elevation of intracellular cyclic adenosine monophosphate (cAMP) by inhibition of phosphodiesterase 4 was shown to induce potent anti-inflammatory effects, but the safety profile of currently available compounds is not sufficient. A different approach to increase intracellular cAMP is the substitution of chemically stabilized cAMP analogues. Bucladesine is a stabilized cAMP analogue with an excellent safety profile which had been marketed as topical treatment of impaired wound healing. In the current study, a novel water free emulsion containing bucladesine was evaluated for anti-inflammatory effects. In the arachidonic acid induced ear oedema model in mice, single or multiple administration of an emulsion containing 1.5% was capable of significantly reducing the inflammatory oedema. The data indicate that bucladesine represents an interesting treatment option for skin diseases where an anti-inflammatory activity is indicated. Due to the established clinical safety, this agent may bridge the gap between potent agents such as glucocorticoids or calcineurin inhibitors and emollients without active compounds.[3]
The aim of this study was to determine the effects of cyclic adenosine monophosphate (cAMP) and its dependent pathway on thermal nociception in a mouse model of acute pain. Here, we studied the effect of H-89 (protein kinase A inhibitor), bucladesine (Db-cAMP) (membrane-permeable analog of cAMP), and pentoxifylline (PTX; nonspecific phosphodiesterase (PDE) inhibitor) on pain sensation. Different doses of H-89 (0.05, 0.1, and 0.5 mg/100 g), PTX (5, 10, and 20 mg/100 g), and Db-cAMP (50, 100, and 300 nm/mouse) were administered intraperitoneally (I.p.) 15 min before a tail-flick test. In combination groups, we injected the first and the second compounds 30 and 15 min before the tail-flick test, respectively. I.p. administration of H-89 and PTX significantly decreased the thermal-induced pain sensation in their low applied doses. Db-cAMP, however, decreased the pain sensation in a dose-dependent manner. The highest applied dose of H-89 (0.5 mg/100 g) attenuated the antinociceptive effect of Db-cAMP in doses of 50 and 100 nm/mouse. Surprisingly, Db-cAMP decreased the antinociceptive effect of the lowest dose of H-89 (0.05 mg/100 g). All applied doses of PTX reduced the effect of 0.05 mg/100 g H-89 on pain sensation; however, the highest dose of H-89 compromised the antinociceptive effect of 20 mg/100 g dose of PTX. Co-administration of Db-cAMP and PTX increased the antinociceptive effect of each compound on thermal-induced pain. In conclusion, PTX, H-89, and Db-cAMP affect the thermal-induced pain by probably interacting with intracellular cAMP and cGMP signaling pathways and cyclic nucleotide-dependent protein kinases.[4]
- Mechanism of Action: Bucladesine acts as a cell-permeable cAMP analog, activating PKA and inhibiting PDE, thereby increasing intracellular cAMP levels. This promotes anti-inflammatory, analgesic, and neuroprotective effects [1,3]
- Therapeutic Potential: Approved for topical treatment of chronic skin ulcers (e.g., decubitus ulcers) due to its wound-healing properties. Investigated in preclinical models for neuropathic pain and cognitive impairment [2,4]
- Limitations: Poor oral bioavailability (<5%) necessitates topical or parenteral administration. High-dose systemic use may cause hypotension due to vasodilatory effects of cAMP [2,4]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C18H23N5NAO8P
分子量
491.37
精确质量
491.118
元素分析
C, 44.00; H, 4.72; N, 14.25; Na, 4.68; O, 26.05; P, 6.30
CAS号
16980-89-5
相关CAS号
Bucladesine calcium;938448-87-4; 362-74-3 (Bucladesine free acid)
PubChem CID
23663967
外观&性状
White to off-white solid
LogP
2.201
tPSA
176.63
氢键供体(HBD)数目
1
氢键受体(HBA)数目
11
可旋转键数目(RBC)
8
重原子数目
33
分子复杂度/Complexity
765
定义原子立体中心数目
4
SMILES
O=C(CCC)O[C@H]1[C@H](N2C(N=CN=C3NC(CCC)=O)=C3N=C2)O[C@@](CO4)([H])[C@@]1([H])OP4([O-])=O.[Na+]
InChi Key
KRBZRVBLIUDQNG-JBVYASIDSA-M
InChi Code
InChI=1S/C18H24N5O8P.Na/c1-3-5-11(24)22-16-13-17(20-8-19-16)23(9-21-13)18-15(30-12(25)6-4-2)14-10(29-18)7-28-32(26,27)31-14;/h8-10,14-15,18H,3-7H2,1-2H3,(H,26,27)(H,19,20,22,24);/q;+1/p-1/t10-,14-,15-,18-;/m1./s1
化学名
sodium (4aR,6R,7R,7aR)-6-(6-butyramido-9H-purin-9-yl)-7-(butyryloxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-olate 2-oxide
别名
dbcAMP; DC-2797; Dibutyryl-cAMP sodium salt; DC2797; Sodium dibutyryl cAMP; DC 2797; Bucladesine sodium; DbcAMP sodium; Actosin; Sodium Dibutyryl cAMP; 16980-89-5; bucladesine; Bucladesine sodium salt; Bucladesine (sodium); Dibutyryl-cAMP, sodium salt; Bucladesine sodium [JAN]; Dibutyryl-cAMP sodium salt; Cyclic dibutyryl-AMP sodium salt
HS Tariff Code
2934.99.03.00
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 98 mg/mL (199.4 mM)
Water:98 mg/mL (199.4 mM)
Ethanol: N/A
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 4.25 mg/mL (8.65 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 42.5 mg/mL澄清的DMSO储备液加入到400 μL PEG300中,混匀;再向上述溶液中加入50 μL Tween-80,混匀;然后加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 4.25 mg/mL (8.65 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 42.5 mg/mL 澄清 DMSO 储备液加入 900 μL 20% SBE-β-CD 生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 4.25 mg/mL (8.65 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 42.5 mg/mL 澄清 DMSO 储备液添加到 900 μL 玉米油中并混合均匀。


配方 4 中的溶解度: 10%DMSO +ddH2O: 30 mg/mL

配方 5 中的溶解度: 100 mg/mL (203.51 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶.

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.0351 mL 10.1756 mL 20.3513 mL
5 mM 0.4070 mL 2.0351 mL 4.0703 mL
10 mM 0.2035 mL 1.0176 mL 2.0351 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
A Phase I/II Study of Bucladesine in Patients with Severe Methylmalonic Acidemia
CTID: jRCT2041210065
Status: Recruiting
Date: 2021-09-04
Autologous Fibrin Glue for Dermal Ulcer Treatment
CTID: jRCTs052190052
Status: Complete
Date: 2019-09-20
生物数据图片
联系我们