iCRT3

别名: iCRT 3; 901751-47-1; iCRT-3; 2-(((2-(4-Ethylphenyl)-5-methyloxazol-4-yl)methyl)thio)-N-phenethylacetamide; CHEMBL3589009; 2-({[2-(4-ETHYLPHENYL)-5-METHYL-1,3-OXAZOL-4-YL]METHYL}SULFANYL)-N-(2-PHENYLETHYL)ACETAMIDE; 2-[[[2-(4-ethylphenyl)-5-methyl-4-oxazolyl]methyl]thio]-N-(2-phenylethyl)acetamide; ChemDiv3_009799; iCRT-3
目录号: V3194 纯度: ≥98%
iCRT3 (iCRT-3) 是 Wnt/wingless 信号通路中 Wnt 和 β-catenin 响应性转录的抑制剂,具有抗癌活性。
iCRT3 CAS号: 901751-47-1
产品类别: Wnt(beta)-catenin
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
iCRT3 (iCRT-3) 是 Wnt/wingless 信号通路中 Wnt 和 β-catenin 响应性转录的抑制剂,具有抗癌活性。在 Wnt 响应 STF16-luc 报告基因检测中,其 IC50 为 8.2 nM。 iCRT3 可以有效阻断各种哺乳动物和癌细胞系中 Wnt/β-catenin 诱导的靶基因和表型。重要的是,这些 Wnt 抑制剂对人类结肠肿瘤活检培养物以及表现出 Wnt 信号传导失调的结肠癌细胞系具有特异性细胞毒性。 iCRT3 与 β-连环蛋白结合并干扰其与 TCF 的相互作用。 iCRT3 显着降低 LPS 诱导的 Wnt/β-catenin 活性,并以剂量依赖性方式抑制 TNF-α 产生和 IκB 降解。
生物活性&实验参考方法
靶点
β-catenin-responsive transcription (CRT)
体外研究 (In Vitro)
iCRT3 抑制对 Wnt 和 β-catenin 敏感的转录。 iCRT3 显着降低了 TOP Flash 活动和 NTSR1 级别。 iCRT3可以显着抵消神经降压素(NTS)和Wnt3a的抗凋亡作用[1]。与 DMSO 对照相比,长期 iCRT3 维持的细胞表现出经典多能性的表达增加,但同时分化标记物和 T 细胞因子 (TCF) 靶基因的表达减少[2]。 iCRT3 治疗在 12.5、25、50 和 75 μM 剂量下,TNF-α 水平分别降低 14.7%、18.5%、44.9% 和 61.3%。与媒介物相比,iCRT3 疗法的 IκB 水平呈剂量依赖性上升[3]。
体内研究 (In Vivo)
iCRT3 治疗可显着降低肿瘤生长速度。 iCRT3 的肿瘤抑制功能始终与增殖标志物 Ki67 指数的下降相关[1]。与载体组相比,10 mg/kg iCRT3 治疗组的 IL-6 水平降低了 82.9%。在假手术中,检测不到 IL-1β 水平;然而,在脓毒症小鼠中,当给予 5 和 10 mg/kg iCRT3 时,它们分别达到 371 pg/mL 和下降 30.2% 和 53.2%。用 5 和 10 mg/kg 剂量的 iCRT3 治疗的这些脓毒症小鼠的 AST 水平分别比用载体治疗的动物低 15.4% 和 44.2%。与媒介物组相比,用 10 mg/kg iCRT3 治疗后,肺形态得到改善,微观退化更少。将 iCRT3 治疗动物的肺组织与媒介物组进行比较时,凋亡细胞减少了 92.7%[3]。
酶活实验
β-catenin-TCF报告活性测定[3]
RAW264.7细胞在转染前一天以1.24 × 105个细胞/ ml的密度接种。细胞与250 ng TOP-TK-Luc或TOP-TK-Luc和25 ng pRL-TK报告质粒短暂共转染,使用Lipofectamine 3000 Reagent,按照制造商的说明。转染24 h后,用iCRT3或对照物预处理细胞50 min,然后用LPS (1 ng/ml)刺激24 h。转染后48小时裂解细胞,根据制造商的说明,用双荧光素酶报告基因检测系统测定荧光素酶活性。TOP-TK-Luc包含最优位点,TOP-TK-Luc包含位于萤火虫荧光素酶报告基因上游的突变tcf结合位点。将TOP和FOP萤火虫荧光素酶活性归一化为来自共转染pRL-TK质粒的Renilla荧光素酶活性,作为转染效率的内部对照。所有实验都进行了至少两次的三次重复。
细胞实验
荧光素酶报告试验[1]
细胞在24孔板中以4 × 105个细胞/孔的大小进行镀膜,用Lipofectamine 2000 瞬时转染TopFlash(0.5µg)和Renilla报告基因(0.05µg)。A172或U87细胞中分别加入NTS、Wnt3a、SR48692和iCRT3处理24 h。收集细胞,转染2天后测定荧光素酶活性。采用双荧光素酶报告基因检测系统测定荧光素酶活性。
细胞增殖和细胞凋亡试验[1]
将细胞接种到96孔板中,每孔密度为5 × 103个细胞,在指定处理的培养基中再孵育48小时。根据制造商的说明,分别使用Cell Counting kit-8和Caspase-Glo 3/7检测试剂盒进行细胞活力和细胞凋亡检测。
对于长期培养,在DMSO或iCRT3的干条件下(血清加LIF),将细胞以有限的稀释度在6孔或96孔板中进行多次传代(14 d),每天更换培养基。每代进行AP染色以监测相对多能性水平。使用的小分子包括10µM iCRT3和1µM XAV939,用DMSO稀释。L- wnt3a和对照L细胞是R.T. Moon赠送的。[2]
动物实验
A172 cells were used to establish a subcutaneous xenograft and to determine the anti-tumor effects of SR48692 and iCRT3. NOD-SCID BALB/c mice were inoculated subcutaneously in the right back with 2 × 106 A172 cells. The growth of the primary tumors was recorded every 4 days. SR48692 (10 mg/kg) and iCRT3 (5 mg/kg) was diluted in PBS i.p. triweekly when tumors grew to ∼200 mm3. The control mice were treated with blank PBS containing 5% (v/v) DMSO. Tumor volume was evaluated with the following formula: volume = tumor length × width2/2. The mice were sacrificed 24 days after pharmaceutical treatment. The tumors were resected and embedded in paraffin, and the Ki67 staining was analyzed by immunohistochemistry.[1]
Mice were randomly allocated to three groups: sham (n = 5 mice), vehicle and treatment (n = 8 mice per group). iCRT3 was reconstituted with cell culture grade 100% DMSO as 50 mg/ml stock. 5 and 10 mg/kg body weight (BW) concentrations of iCRT3 were made by diluting stock in sterile normal saline with 5% DMSO. At 5 h after CLP, 5% DMSO in normal saline (vehicle) or iCRT3 at 5 or 10 mg/kg BW doses in 200 μl volume was delivered by intraperitoneal injection using 25 G × 7/8″ hypodermic needle. The investigator performing the animal experiments was blinded to the treatment assignment to eliminate any bias.[3]
Dissolved in 5% DMSO in saline; 5 and 10 mg/kg; i.p.
C57BL/6 mice
参考文献

[1]. A Novel Positive Feedback Loop Between NTSR1 and Wnt/β-Catenin Contributes to Tumor Growth of Glioblastoma. Cell Physiol Biochem. 2017 Oct 24;43(5):2133-2142.

[2]. Inhibition of β-catenin-TCF1 interaction delays differentiation of mouse embryonic stem cells. J Cell Biol. 2015 Oct 12;211(1):39-51.

[3]. Mitigation of sepsis-induced inflammatory responses and organ injury through targeting Wnt/β-catenin signaling. doi: 10.1038/s41598-017-08711-6.

其他信息
Background/aims: Neurotensin (NTS), an intestinal hormone, is profoundly implicated in cancer progression through binding its primary receptor NTSR1. The conserved Wnt/β-Catenin pathway regulates cell proliferation and differentiation via activation of the β-catenin/T-cell factor (TCF) complex and subsequent modulation of a set of target genes. In this study, we aimed to uncover the potential connection between NTS/NTSR1 signaling and Wnt/β-Catenin pathway. Methods: Genetic silencing, pharmacological inhibition and gain-of-function studies as well as bioinformatic analysis were performed to uncover the link between NTS/ NTSR1 signaling and Wnt/β-Catenin pathway. Two inhibitors were used in vivo to evaluate the efficiency of targeting NTS/NTSR1 signaling or Wnt/β-Catenin pathway. Results: We found that NTS/NTSR1 induced the activation of mitogen-activated protein kinase (MAPK) and the NF-κB pathway, which further promoted the expression of Wnt proteins, including Wnt1, Wnt3a and Wnt5a. Meanwhile, the mRNA and protein expression levels of NTSR1 were increased by the Wnt pathway activator Wnt3a and decreased by the Wnt inhibitor iCRT3 in glioblastoma cells. Furthermore, pharmacological inhibition of NTS/NTSR1 or Wnt/β-Catenin signaling suppressed tumor growth in vitro and in vivo. Conclusion: These results reveal a positive feedback loop between NTS/NTSR1 and Wnt/β-Catenin signaling in glioblastoma cells that might be important for tumor development and provide potential therapeutic targets for glioblastoma.[1]
The ability of mouse embryonic stem cells (mESCs) to self-renew or differentiate into various cell lineages is regulated by signaling pathways and a core pluripotency transcriptional network (PTN) comprising Nanog, Oct4, and Sox2. The Wnt/β-catenin pathway promotes pluripotency by alleviating T cell factor TCF3-mediated repression of the PTN. However, it has remained unclear how β-catenin's function as a transcriptional activator with TCF1 influences mESC fate. Here, we show that TCF1-mediated transcription is up-regulated in differentiating mESCs and that chemical inhibition of β-catenin/TCF1 interaction improves long-term self-renewal and enhances functional pluripotency. Genetic loss of TCF1 inhibited differentiation by delaying exit from pluripotency and conferred a transcriptional profile strikingly reminiscent of self-renewing mESCs with high Nanog expression. Together, our data suggest that β-catenin's function in regulating mESCs is highly context specific and that its interaction with TCF1 promotes differentiation, further highlighting the need for understanding how its individual protein-protein interactions drive stem cell fate. [2]
The Wnt/β-catenin pathway has been involved in regulating inflammation in various infectious and inflammatory diseases. Sepsis is a life-threatening condition caused by dysregulated inflammatory response to infection with no effective therapy available. Recently elevated Wnt/β-catenin signaling has been detected in sepsis. However, its contribution to sepsis-associated inflammatory response remains to be explored. In this study, we show that inhibition of Wnt/β-catenin signaling reduces inflammation and mitigates sepsis-induced organ injury. Using in vitro LPS-stimulated RAW264.7 macrophages, we demonstrate that a small-molecule inhibitor of β-catenin responsive transcription, iCRT3, significantly reduces the LPS-induced Wnt/β-catenin activity and also inhibits TNF-α production and IκB degradation in a dose-dependent manner. Intraperitoneal administration of iCRT3 to C57BL/6 mice, subjected to cecal ligation and puncture-induced sepsis, decreases the plasma levels of proinflammatory cytokines and organ injury markers in a dose-dependent manner. The histological integrity of the lungs is improved with iCRT3 treatment, along with reduced lung collagen deposition and apoptosis. In addition, iCRT3 treatment also decreases the expression of the cytokines, neutrophil chemoattractants, as well as the MPO activity in the lungs of septic mice. Based on these findings we conclude that targeting the Wnt/β-Catenin pathway may provide a potential therapeutic approach for treatment of sepsis.[3]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C23H26N2O2S
分子量
394.53
精确质量
394.171
元素分析
C, 70.02; H, 6.64; N, 7.10; O, 8.11; S, 8.13
CAS号
901751-47-1
相关CAS号
901751-47-1
PubChem CID
6622273
外观&性状
White to off-white solid powder
LogP
5.195
tPSA
80.43
氢键供体(HBD)数目
1
氢键受体(HBA)数目
4
可旋转键数目(RBC)
9
重原子数目
28
分子复杂度/Complexity
462
定义原子立体中心数目
0
InChi Key
QTDYVSIBWGVBKU-UHFFFAOYSA-N
InChi Code
InChI=1S/C23H26N2O2S/c1-3-18-9-11-20(12-10-18)23-25-21(17(2)27-23)15-28-16-22(26)24-14-13-19-7-5-4-6-8-19/h4-12H,3,13-16H2,1-2H3,(H,24,26)
化学名
2-[[[2-(4-ethylphenyl)-5-methyl-4-oxazolyl]methyl]thio]-N-(2-phenylethyl)acetamide
别名
iCRT 3; 901751-47-1; iCRT-3; 2-(((2-(4-Ethylphenyl)-5-methyloxazol-4-yl)methyl)thio)-N-phenethylacetamide; CHEMBL3589009; 2-({[2-(4-ETHYLPHENYL)-5-METHYL-1,3-OXAZOL-4-YL]METHYL}SULFANYL)-N-(2-PHENYLETHYL)ACETAMIDE; 2-[[[2-(4-ethylphenyl)-5-methyl-4-oxazolyl]methyl]thio]-N-(2-phenylethyl)acetamide; ChemDiv3_009799; iCRT-3
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO:80 mg/mL
Water:< 1mg/mL
Ethanol:80 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (6.34 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (6.34 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.5347 mL 12.6733 mL 25.3466 mL
5 mM 0.5069 mL 2.5347 mL 5.0693 mL
10 mM 0.2535 mL 1.2673 mL 2.5347 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
相关产品
联系我们