PIK-75

别名: PIK 75; PIK75; PIK-75; 372196-67-3; 945619-31-8; UNII-9058I8S63D; (E)-N'-((6-bromoimidazo[1,2-a]pyridin-3-yl)methylene)-N,2-dimethyl-5-nitrobenzenesulfonohydrazide; 9058I8S63D; PIK-75 2-甲基-5-硝基-1-苯磺酰[2-[(6-溴咪唑并[1,2-a]吡啶-3-基)亚甲基]-1-甲基肼]; 2-甲基-5-硝基苯磺酸-2-[(6-溴咪唑并[1,2-a]吡啶-3-基)亚甲基]-1-甲基肼
目录号: V3225 纯度: ≥98%
PIK-75 是一种 p110α 抑制剂,IC50 为 5.8 nM,其效力比 p110β 强 200 倍。
PIK-75 CAS号: 372196-67-3
产品类别: DNA-PK
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of PIK-75:

  • PIK-75盐酸盐
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
PIK-75 是一种 p110α 抑制剂,IC50 为 5.8 nM,其效力比 p110β 强 200 倍。此外,在无细胞测定中,它显着抑制 DNA-PK,IC50 为 2 nM。在多种细胞类型中,PIK-75(作为 PI 3 激酶药物发现计划的一部分而创建)可以在浓度为 100 nM 时减弱 Akt/PKB 的胰岛素刺激。 PIK-75 的 IC50 值在 50 nM 范围内,已被证明可以抑制多种不同细胞系的生长。根据体内研究,当给予 50 mg/kg 剂量时,PIK-75 可抑制小鼠模型中 HeLa 细胞异种移植物的生长。当 PIK-75 攻击急性髓系白血病细胞中 PI3K 的 p110 亚型时,Bcl-xL 和 Bak 之间的连接被破坏。
生物活性&实验参考方法
靶点
DNA-PK (IC50 = 2 nM); p110α (IC50 = 5.8 nM); p110γ (IC50 = 76 nM); p110δ (IC50 = 510 nM); p110β (IC50 = 1.3 μM); hsVPS34 (IC50 = 2.6 μM); PI3KC2β (IC50 = 1 μM); PI3KC2α (IC50 = 10 μM); mTORC1 (IC50 = 1 μM); mTORC2 (IC50 = 10 μM); ATM (IC50 = 2.3 μM); ATR (IC50 = 21 μM); PI4KIIIβ (IC50 = 50 μM)
体外研究 (In Vitro)
PIK-75 还抑制 p110δ、PI3KC2β、mTORC1、ATM、hsVPS34、PI3KC2α、mTORC2、ATR 和 PI4KIIIβ,IC50 为 510 nM、~1 μM、~1 μM、2.3 μM、2.6 μM、~10 μM、~10 μM、分别为 21 μM、~50 μM[1]。 PIK-75 单独抑制 Thr 308 的磷酸化,L6 肌管中的 IC50 为 1.2 M,3T3-L1 脂肪细胞中的 IC50 为 1.3 M[1]。 PIK-75(1–1000 nM;5 分钟)的 IC50 值为 78 nM,以剂量依赖性方式抑制 CHO-IR 细胞中胰岛素诱导的 PKB Ser473 和 Thr308 磷酸化。通过诱导胰腺癌细胞凋亡,PIK-75(0.1-1000 nM;48 小时)可阻止其生长和存活[3]。此外,当 PIK-75 (0.1–1000 nM) 存在时,胰腺癌 MIA PaCa-2 和 AsPC-1 细胞形成的集落较少[3]。
体内研究 (In Vivo)
PIK-75 (2 mg/kg) 增强吉西他滨 (20 mg/kg) 的体内抗癌活性。单独使用吉西他滨 (20 mg/kg) 或 PIK-75 (2 mg/kg) 均能显着减缓肿瘤生长。 PIK-75 和吉西他滨的组合显然具有积极作用,因为它显着减缓体内肿瘤的生长,同时对小鼠的体重没有负面影响[3]。
PIK-75增强吉西他滨的体内抗癌活性[3]
体内小鼠异种移植物模型进一步证明了PIK-75/吉西他滨组合的效果。携带MIA PaCa-2肿瘤的小鼠服用吉西他滨(20mg/kg)、PIK-75(2mg/kg)或两种药物的组合。由于PIK-75是一种可逆抑制剂,因此每周给药5次PIK-75以确保保持足够的抑制作用。吉西他滨每周给药两次。如图7A所示,吉西他滨或PIK-75对肿瘤生长的抑制程度相似。PIK-75/吉西他滨的有益作用是显而易见的,因为这种组合显著降低了体内肿瘤的生长,而不影响小鼠的体重(图7B)。
酶活实验
将 PI3K 抑制剂 PIK-75 以 10 mM 的浓度溶解在二甲亚砜中,并保存在 -20°C 下直至使用。 PI3K 酶活性在 50 μL 20 mM HEPES(pH 7.5)和含有 180 μM 磷脂酰肌醇的 5 mM MgCl2 中测定,反应通过添加 100 μM ATP(含有 2.5 μCi 的 [γ-32P]ATP)开始。室温孵育 30 分钟后,添加 50 μL 1 M HCl 终止酶反应。然后用 100 μL 氯仿/甲醇 [1:1 (v/v)] 和 250 μL 2 M KCl 提取磷脂,然后进行液体闪烁计数。将抑制剂稀释在 20% (v/v) 二甲基亚砜中,生成浓度与抑制酶活性的曲线,然后使用 Windows 版 Prism 5.00 版进行分析,计算 IC50。对于动力学分析,使用测量 ATP 消耗的发光测定法。 PI3K 酶活性在 50 μL 20 mM HEPES(pH 7.5)和 5 mM MgCl2 以及不同浓度的 PI 和 ATP 中测定。室温孵育 60 分钟后,加入 50 μL Kinase-Glo 终止反应,然后再孵育 15 分钟。然后使用 Fluostar 读板器读取发光。使用 Prism 分析结果。
细胞实验
在使用或不使用抑制剂的 TGFβ 刺激 48 小时后,使用 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑 (MTT) 测定评估线粒体活性。将收获的洗涤细胞重悬于DMEM-10% FCS中并等分(500 μL)到24孔簇板中,然后一式两份连续稀释(1:2)。稀释细胞后,立即向每个孔中添加 100 μL 适当浓度的 MTT(溶解在 PBS 中,并在使用前通过 0.2 μm 过滤器过滤,以除去任何蓝色甲臜产物),然后在 37 °C 下孵育 3.5 小时。通过向每个孔中添加 500 μL 10% 十二烷基硫酸钠 (SDS) 的 0.01 M HCl 溶液,在 37 °C 下将所得蓝色甲臜产物溶解过夜(16 小时)。将每个重复孔中的样品 (150 μL) 转移至 96 孔微孔板,并通过自动分光光度法对照试剂空白(无细胞)测定光密度。在 570 nm 的测试波长和 690 nm 的参考波长下测量吸光度。对于每个原代细胞培养物,对每次处理的三到六个孔的结果进行平均,并且数据表示为 570 到 690 nm 的吸光度。细胞:A2780、A2780/cp70、2780AD、HCT116、HT29、WIL、CALU-3、MCF7、PC3 和 HS852 细胞。
动物实验
Dissolved in DMSO and then diluted in PBS.; ≤1 μM; i.p.
RAMTLn3 cells are injected into the right fourth mammary fat pad from the head of female severe-combined immunodeficient/NCr mice.
Tumor xenograft study [3]
MIA PaCa-2 cells (∼1.7×106 cells/mouse) mixed with Matrigel were injected subcutaneously into the flank of male athymic nude (Foxn1nu) mice aged 6-weeks. Gemcitabine (50 mg/ml) was dissolved in PBS and PIK-75 (20 mg/ml) was dissolved in DMSO. Injection solution was made as 10% of Cremophor® EL and 3% of poly(ethylene glycol) 400 in sterile water. Before administration of compounds, gemcitabine was further diluted in PBS and DMSO or PIK-75 was further diluted in the injection solution and sterilized by 0.2 μm filter unit. These diluents were mixed with 1:1 ratio and administered into peritoneal cavity of the mouse. Gemcitabine (20 mg/kg) or gemcitabine (20 mg/kg)/PIK-75 (2 mg/kg) combination was administered twice per week and vehicle control and PIK-75 (2 mg/kg) were administered 5 times per week. The body weights and tumor sizes were measured 3 times per week. Tumor volumes were calculated as width (mm) × length (mm) × height (mm)/2.
参考文献

[1]. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell. 2006 May 19;125(4):733-47.

[2]. Evidence for functional redundancy of class IA PI3K isoforms in insulin signalling. Biochem J. 2007 Jun 15;404(3):449-58.

[3]. Inhibition of NRF2 by PIK-75 augments sensitivity of pancreatic cancer cells to gemcitabine. Int J Oncol. 2014 Mar;44(3):959-69.

其他信息
N-[(6-bromo-3-imidazo[1,2-a]pyridinyl)methylideneamino]-N,2-dimethyl-5-nitrobenzenesulfonamide is a sulfonamide.
PIK-75 is a preferential p110 alpha/gamma PI3K inhibitor.
Phosphoinositide 3-kinases (PI3-Ks) are an important emerging class of drug targets, but the unique roles of PI3-K isoforms remain poorly defined. We describe here an approach to pharmacologically interrogate the PI3-K family. A chemically diverse panel of PI3-K inhibitors was synthesized, and their target selectivity was biochemically enumerated, revealing cryptic homologies across targets and chemotypes. Crystal structures of three inhibitors bound to p110gamma identify a conformationally mobile region that is uniquely exploited by selective compounds. This chemical array was then used to define the PI3-K isoforms required for insulin signaling. We find that p110alpha is the primary insulin-responsive PI3-K in cultured cells, whereas p110beta is dispensable but sets a phenotypic threshold for p110alpha activity. Compounds targeting p110alpha block the acute effects of insulin treatment in vivo, whereas a p110beta inhibitor has no effect. These results illustrate systematic target validation using a matrix of inhibitors that span a protein family.[1]
Recent genetic knock-in and pharmacological approaches have suggested that, of class IA PI3Ks (phosphatidylinositol 3-kinases), it is the p110alpha isoform (PIK3CA) that plays the predominant role in insulin signalling. We have used isoform-selective inhibitors of class IA PI3K to dissect further the roles of individual p110 isoforms in insulin signalling. These include a p110alpha-specific inhibitor (PIK-75), a p110alpha-selective inhibitor (PI-103), a p110beta-specific inhibitor (TGX-221) and a p110delta-specific inhibitor (IC87114). Although we find that p110alpha is necessary for insulin-stimulated phosphorylation of PKB (protein kinase B) in several cell lines, we find that this is not the case in HepG2 hepatoma cells. Inhibition of p110beta or p110delta alone was also not sufficient to block insulin signalling to PKB in these cells, but, when added in combination with p110alpha inhibitors, they are able to significantly attenuate insulin signalling. Surprisingly, in J774.2 macrophage cells, insulin signalling to PKB was inhibited to a similar extent by inhibitors of p110alpha, p110beta or p110delta. These results provide evidence that p110beta and p110delta can play a role in insulin signalling and also provide the first evidence that there can be functional redundancy between p110 isoforms. Further, our results indicate that the degree of functional redundancy is linked to the relative levels of expression of each isoform in the target cells.[2]
We describe the potential benefit of PIK-75 in combination of gemcitabine to treat pancreatic cancer in a preclinical mouse model. The effect of PIK-75 on the level and activity of NRF2 was characterized using various assays including reporter gene, quantitative PCR, DNA-binding and western blot analyses. Additionally, the combinatorial effect of PIK-75 and gemcitabine was evaluated in human pancreatic cancer cell lines and a xenograft model. PIK-75 reduced NRF2 protein levels and activity to regulate its target gene expression through proteasome-mediated degradation of NRF2 in human pancreatic cancer cell lines. PIK-75 also reduced the gemcitabine-induced NRF2 levels and the expression of its downstream target MRP5. Co-treatment of PIK-75 augmented the antitumor effect of gemcitabine both in vitro and in vivo. Our present study provides a strong mechanistic rationale to evaluate NRF2 targeting agents in combination with gemcitabine to treat pancreatic cancers.[3]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C16H14BRN5O4S
分子量
452.28
精确质量
450.994
元素分析
C, 42.49; H, 3.12; Br, 17.67; N, 15.48; O, 14.15; S, 7.09
CAS号
372196-67-3
相关CAS号
PIK-75 hydrochloride;372196-77-5
PubChem CID
10275789
外观&性状
Light brown to brown solid powder
密度
1.7±0.1 g/cm3
折射率
1.701
LogP
3.84
tPSA
121.24
氢键供体(HBD)数目
0
氢键受体(HBA)数目
7
可旋转键数目(RBC)
4
重原子数目
27
分子复杂度/Complexity
679
定义原子立体中心数目
0
SMILES
BrC1=CN2C(/C=N/N(C)S(C3C=C([N+]([O-])=O)C=CC=3C)(=O)=O)=CN=C2C=C1
InChi Key
QTHCAAFKVUWAFI-DJKKODMXSA-N
InChi Code
InChI=1S/C16H14BrN5O4S/c1-11-3-5-13(22(23)24)7-15(11)27(25,26)20(2)19-9-14-8-18-16-6-4-12(17)10-21(14)16/h3-10H,1-2H3/b19-9+
化学名
N-[(E)-(6-bromoimidazo[1,2-a]pyridin-3-yl)methylideneamino]-N,2-dimethyl-5-nitrobenzenesulfonamide
别名
PIK 75; PIK75; PIK-75; 372196-67-3; 945619-31-8; UNII-9058I8S63D; (E)-N'-((6-bromoimidazo[1,2-a]pyridin-3-yl)methylene)-N,2-dimethyl-5-nitrobenzenesulfonohydrazide; 9058I8S63D; PIK-75
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~10 mM
Water: N/A
Ethanol: N/A
制备储备液 1 mg 5 mg 10 mg
1 mM 2.2110 mL 11.0551 mL 22.1102 mL
5 mM 0.4422 mL 2.2110 mL 4.4220 mL
10 mM 0.2211 mL 1.1055 mL 2.2110 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • PIK-75

    RF2-knockdown reduces the proliferation of pancreatic cancer AsPC-1 cells.2014 Mar;44(3):959-69.

  • PIK-75

    PIK-75 reduces NRF2 transcriptional activity in pancreatic cancer cells.


    PIK-75

    PIK-75 induces the proteasome-mediated degradation of NRF2.2014 Mar;44(3):959-69.

  • PIK-75


    PIK-75 potentiates gemcitabine-induced cytotoxicity in pancreatic cancer cells.2014 Mar;44(3):959-69.

  • PIK-75

    PIK-75 inhibits the proliferation and survival of pancreatic cancer cells through apoptotic cell death.2014 Mar;44(3):959-69.

  • PIK-75

    PIK-75 enhances gemcitabine-induced apoptotic cell death and reduces MRP5 expression.2014 Mar;44(3):959-69.

相关产品
联系我们