Rapamycin (Sirolimus; AY22989)

别名: AY 22989; AY22989; AY-22989; NSC-2260804; RAPA; RAP; RPM; SLM; AY 22989; SILA 9268A; WY090217; WY-090217; WY 090217; C07909; D00753; I 2190A; I-2190A; I2190A; NSC 226080; Rapamune 雷帕霉素;Rapamicin(sirolimus ) ;Rapamycin 雷帕霉素;Sirolimus 雷帕霉素 标准品;Sirolimus,certified 标准品;雷帕霉素 (西罗莫司、瑞帕霉素);雷帕霉素 西罗莫司;雷帕霉素(西罗莫司);雷帕霉素,Rapamycin;西罗莫司;西罗莫司 (雷帕霉素);西罗莫司(雷帕霉素) 标准品;西罗莫司,Sirolimus,植物提取物,标准品,对照品;西罗莫司标准品; 雷帕酶素;雷帕霉素 西罗莫司Rapamycin,Sirolimus;雷帕霉素 雷帕霉素,Sirolimus;雷帕霉素:西罗莫司;瑞帕霉素;雷帕霉素 来源于吸水链霉菌
目录号: V0174 纯度: ≥98%
Rapamycin(也称为西罗莫司;AY-22989)是一种从吸水链霉菌细菌中分离出来的天然大环内酯,是一种特异性、有效的 mTOR 抑制剂,在 HEK293 细胞中的 IC50 约为 0.1 nM。
Rapamycin (Sirolimus; AY22989) CAS号: 53123-88-9
产品类别: mTOR
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
5mg
10mg
25mg
50mg
100mg
250mg
500mg
1g
2g
Other Sizes

Other Forms of Rapamycin (Sirolimus; AY22989):

  • Rapamycin analog-2
  • 28-Epirapamycin
  • Seco Rapamycin (Secorapamycin; Secorapamycin A)
  • Rapamycin-13C,d3 (rapamycin; sirolimus-13C,d3; Sirolimus-13C,d3; AY-22989-13C,d3)
  • Seco Rapamycin ethyl ester
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

纯度: =99.046%

产品描述
雷帕霉素(也称为西罗莫司;AY-22989)是一种从吸水链霉菌细菌中分离出来的天然大环内酯,是一种特异性、有效的 mTOR 抑制剂,在 HEK293 细胞中的 IC50 约为 0.1 nM。尽管雷帕霉素最初是作为一种抗真菌抗生素创建的,但它也显示出免疫抑制活性的迹象,因此现在用于预防移植排斥。此外,它还显示出针对多种可移植肿瘤的活性,并且对白血病仅有轻微到完全无活性。雷帕霉素通过阻止 T 细胞激活和增殖来抑制免疫系统。雷帕霉素-FKBP12 复合物是雷帕霉素与 FK 结合蛋白 12 (FKBP12) 结合时形成的,它控制着一种对细胞周期进展至关重要的酶。
生物活性&实验参考方法
靶点
mTOR (IC50 = 0.1 nM); Microbial Metabolite; Autophagy; Human Endogenous Metabolite
体外研究 (In Vitro)
Rapamycin (Sirolimus; AY22989)抑制 HEK293 细胞中的内源性 mTOR 活性,IC50 约为 0.1 nM,比 iRap 和 AP21967 更有效,IC50 分别为约 5 nM 和约 10 nM。 [1] Rapamycin (Sirolimus; AY22989)/雷帕霉素治疗会导致酿酒酵母中严重的 G1/S 细胞周期停滞,并将翻译起始抑制至低于对照的 20% 水平。 [2] 雷帕霉素对 U373-MG 细胞几乎没有活性,IC50 > 25 M,尽管对 mTOR 信号传导的抑制具有类似的影响。 Rapamycin 以剂量依赖性方式显着降低 T98G 和 U87-MG 的细胞活力。通过抑制 mTOR 的活性,雷帕霉素 (100 nM) 会导致雷帕霉素敏感的 U87-MG 和 T98G 细胞发生 G1 期阻滞和自噬,但不会导致细胞凋亡。 [3]
用免疫抑制剂Rapamycin (Sirolimus; AY22989)/雷帕霉素处理或耗尽雷帕霉素TOR1和TOR2靶点的酿酒酵母细胞在细胞周期的早期G1期停止生长。TOR功能的丧失还会导致翻译起始的早期抑制,并诱导饥饿细胞进入静止期(G0)的其他一些生理变化。G1细胞周期蛋白mRNA的翻译控制通过替换UBI4 5'先导区而改变(UBI4通常在饥饿条件下被翻译),抑制雷帕霉素诱导的G1阻滞并给予饥饿敏感性。这些结果表明,翻译起始的阻滞是TOR功能丧失的直接后果,也是G1停滞的原因。我们提出,tor,两个相关的磷脂酰肌醇激酶同源物,是激活eif - 4e依赖性蛋白合成的新信号通路的一部分,因此,在对营养可用性的反应中,G1进程。这种途径可能构成一个检查点,在缺乏营养的情况下阻止早期G1进展和生长。[2]
哺乳动物雷帕霉素靶蛋白(mTOR)是磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B (Akt)信号通路的下游效应分子,是恶性胶质瘤细胞增殖的中枢调节剂。因此,靶向mTOR信号被认为是治疗恶性胶质瘤的一种很有前景的方法。然而,选择性mTOR抑制剂Rapamycin (Sirolimus; AY22989)/雷帕霉素对恶性胶质瘤细胞的细胞毒性作用机制尚不清楚。因此,本研究的目的是阐明雷帕霉素如何对恶性胶质瘤细胞发挥其细胞毒性作用。我们发现雷帕霉素通过抑制mTOR的功能诱导雷帕霉素敏感的恶性胶质瘤U87-MG和T98G细胞自噬,而不是凋亡。相比之下,在雷帕霉素耐药的U373-MG细胞中,雷帕霉素的抑制作用很小,尽管mTOR下游分子p70S6激酶的磷酸化被显著抑制。有趣的是,PI3K抑制剂LY294002和Akt抑制剂UCN-01(7-羟基脲孢素)均通过刺激诱导自噬,使U87-MG和T98G细胞以及U373-MG细胞对雷帕霉素增敏。在肿瘤细胞中强制表达活性Akt抑制LY294002或UCN-01的联合作用,而Akt的显性阴性表达则足以增加肿瘤细胞对雷帕霉素的敏感性。
体内研究 (In Vivo)
体内Rapamycin (Sirolimus; AY22989)/雷帕霉素治疗可特异性阻断 mTOR 下游的靶点,例如 p70S6K 的磷酸化和激活以及 PHAS-1/4E-BP1 对 eIF4E 的抑制作用的释放,从而完全阻断跖肌重量的肥大性增加和纤维尺寸。[4]短期雷帕霉素治疗,即使是最低剂量 0.16 mg/kg,也会导致 p70S6K 活性的深度抑制,这与 Eker 肾肿瘤的肿瘤细胞死亡和坏死增加相关。 [5] 通过降低 VEGF 产生并阻止 VEGF 诱导的内皮细胞信号传导,雷帕霉素可抑制 CT-26 异种移植模型中的血管生成和转移性肿瘤生长。 [6] 4 mg/kg/天的雷帕霉素治疗可显着降低 C6 异种移植物中的肿瘤血管通透性和肿瘤生长。 [7]
骨骼肌通过调节纤维大小的未知机制来适应工作负荷的变化。Akt/mTOR(哺乳动物雷帕霉素靶蛋白)和钙调磷酸酶/NFAT(活化T细胞核因子)这两种信号通路在体内骨骼肌肥大和萎缩模型中参与肌肉肥大的作用基于体外研究结果。Akt/mTOR通路在肌肉肥大时上调,在肌肉萎缩时下调。此外,Rapamycin (Sirolimus; AY22989)/雷帕霉素是一种选择性mTOR阻滞剂,在所有模型中都能阻断肥厚,而不引起对照肌肉萎缩。相比之下,钙调神经磷酸酶途径在体内肥厚过程中不被激活,钙调神经磷酸酶抑制剂、环孢素A和FK506并没有钝化肥厚。最后,遗传激活Akt/mTOR通路足以在体内引起肥大并防止萎缩,而遗传阻断该通路则会阻断体内肥大。我们得出的结论是,Akt/mTOR通路及其下游靶点p70S6K和phase -1/ 4e - bp1的激活是调控骨骼肌纤维大小的必要条件,Akt/mTOR通路的激活可以对抗废用引起的肌肉萎缩。
酶活实验
HEK293 细胞以 2-2.5×105 个细胞/孔铺在 12 孔板中,并在 DMEM 中血清饥饿 24 小时。Rapamycin (Sirolimus; AY22989)/雷帕霉素 (0.05–50 nM) 在 37 °C 下以递增浓度给予细胞 15 分钟。在 37°C 下花费 30 分钟添加终浓度为 20% 的血清。细胞裂解物在裂解后通过 SDS-PAGE 分离。将已解析的蛋白质转移到聚偏二氟乙烯膜上,并使用对 p70 S6 激酶的 Thr-389 具有磷酸特异性的一抗进行免疫印迹。使用 ImageQuant 和 KaleidaGr 进行数据分析。[1]
雷帕霉素/Rapamycin (Sirolimus; AY22989)是一种免疫抑制药物,同时结合12 kda的FK506-和雷帕霉素结合蛋白(FKBP12,或FKBP)和哺乳动物雷帕霉素靶蛋白(mTOR)激酶的FKBP-雷帕霉素结合(FRB)结构域。所得到的三元配合物已被用于有条件地干扰蛋白质功能,其中一种方法涉及通过其错定位干扰感兴趣的蛋白质。我们合成了两个在FRB结合界面C-16位置具有大取代基的雷帕霉素衍生物,并使用酵母的三杂交实验对这些衍生物进行了FRB突变体文库的筛选。几种FRB突变体对一种雷帕霉素衍生物有反应,其中20种突变体在哺乳动物细胞中得到进一步表征。将对配体反应最灵敏的突变体与黄色荧光蛋白融合,并测量存在和不存在配体时的荧光水平,以确定融合蛋白的稳定性。在没有雷帕霉素衍生物的情况下,野生型和突变型FRB结构域的表达水平很低,而在配体处理后,表达水平上升到10倍。对合成的雷帕霉素衍生物进行定量质谱分析,发现其中一种化合物含有污染雷帕霉素。此外,未受污染的类似物保留了抑制mTOR的能力,尽管相对于雷帕霉素的效力有所减弱。在使用这些系统时,应考虑野生型FRB和FRB突变体所显示的配体依赖性稳定性以及雷帕霉素衍生物的抑制潜力和纯度,这是潜在的混淆实验变量。[1]
细胞实验
将细胞暴露于不同浓度的Rapamycin (Sirolimus; AY22989)/雷帕霉素中 72 小时。为了评估细胞活力,通过胰蛋白酶消化收集细胞,用台盼蓝染色,并对每孔中的活细胞进行计数。为了测定细胞周期,将细胞用胰蛋白酶消化,用 70% 乙醇固定,并使用流式细胞术试剂套件用碘化丙啶染色。使用 FACScan 流式细胞仪和 CellQuest 软件分析样品的 DNA 含量。对于细胞凋亡检测,使用 ApopTag 细胞凋亡检测试剂盒通过末端脱氧核苷酸转移酶介导的 dUTP 缺口末端标记 (TUNEL) 技术对细胞进行染色。为了检测酸性囊泡细胞器 (AVO) 的发育,将细胞用吖啶橙 (1 μg/mL) 染色 15 分钟,并在荧光显微镜下检查。为了量化 AVO 的发育,将细胞用吖啶橙 (1 μg/mL) 染色 15 分钟,用胰蛋白酶-EDTA 从板中取出,并使用 FACScan 流式细胞仪和 CellQuest 软件进行分析。为了分析自噬过程,将细胞与 0.05 mM monodansylcadaverine 在 37 °C 下孵育 10 分钟,然后在荧光显微镜下观察。
细胞活力测定[3]
测定Rapamycin (Sirolimus; AY22989)/雷帕霉素和Rapamycin (Sirolimus; AY22989) + LY294002或UCN-01作用于肿瘤细胞,我们测定了治疗后的细胞活力。我们使用了先前描述的台盼蓝染料排除试验。采集呈指数生长的肿瘤细胞,以每孔5 × 103个细胞(0.1 mL)接种于96孔平底板,37℃孵育过夜。然后将细胞加雷帕霉素或不加雷帕霉素或雷帕霉素加LY294002或UCN-01孵育72小时。胰蛋白酶化收集细胞后,用台盼蓝染色,计数每孔活细胞数。未经处理的细胞(对照组)存活率为100%。根据处理细胞的平均细胞活力计算存活分数。[3]
动物实验
Athymic Nu/Nu mice inoculated subcutaneously with VEGF-A-expressing C6 rat glioma cells
~4 mg/kg/day
Injection i.p.
Drug administration in vivo.[4]
Animals were randomized to treatment or vehicle groups so that the mean starting body weights of each group were equal. Drug treatment began on the day of surgery or on the first day of reloading after the 14-day suspension. Rapamycin was delivered once daily by intraperitoneal injection at a dose of 1.5 mg kg−1, dissolved in 2% carboxymethylcellulose. CsA was delivered once daily by subcutaneous injection at a dose of 15 mg kg−1, dissolved in 10% methanol and olive oil. FK506 was delivered once daily via subcutaneous injection at a dose of 3 mg kg−1, dissolved in 10% ethanol, 10% cremophor and saline.[4]
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
In adult renal transplant patients with low- to moderate-immunologic risk, oral administration of 2 mg sirolimus led to a Cmax of 14.4 ± 5.3 ng/mL for oral solution and 15.0 ± 4.9 ng/mL for oral tablets. The tmax was 2.1 ± 0.8 hours for oral solution and 3.5 ± 2.4 hours for oral tablets. In healthy subjects, the tmax is one hour. In a multi-dose study, steady-state was reached six days following repeated twice-daily administration without an initial loading dose, with the average trough concentration of sirolimus increased approximately 2- to 3-fold. It is suspected that a loading dose of three times the maintenance dose will provide near steady-state concentrations within one day in most patients. The systemic availability of sirolimus is approximately 14%. In healthy subjects, the mean bioavailability of sirolimus after administration of the tablet is approximately 27% higher relative to the solution. Sirolimus tablets are not bioequivalent to the solution; however, clinical equivalence has been demonstrated at the 2 mg dose level. Sirolimus concentrations, following the administration of Rapamune Oral Solution to stable renal transplant patients, are dose-proportional between 3 and 12 mg/m2.
Following oral administration of [14C] sirolimus in healthy subjects, about 91% of the radioactivity was recovered from feces and only 2.2% of the radioactivity was detected in urine. Some of the metabolites of sirolimus are also detectable in feces and urine.
The mean (± SD) blood-to-plasma ratio of sirolimus was 36 ± 18 L in stable renal allograft patients, indicating that sirolimus is extensively partitioned into formed blood elements. The mean volume of distribution (Vss/F) of sirolimus is 12 ± 8 L/kg.
In adult renal transplant patients with low- to moderate-immunologic risk, oral administration of 2 mg sirolimus led to oral clearance of 173 ± 50 mL/h/kg for oral solution and 139 ± 63 mL/h/kg for oral tablets.
Following administration of /Sirolimus/ Oral Solution, sirolimus is rapidly absorbed, with a mean time-to-peak concentration (t max ) of approximately 1 hour after a single dose in healthy subjects and approximately 2 hours after multiple oral doses in renal transplant recipients. The systemic availability of sirolimus was estimated to be approximately 14% after the administration of /Sirolimus/ Oral Solution. The mean bioavailability of sirolimus after administration of the tablet is about 27% higher relative to the oral solution.
In 22 healthy volunteers receiving Rapamune Oral Solution, a high-fat meal altered the bioavailability characteristics of sirolimus. Compared with fasting, a 34% decrease in the peak blood sirolimus concentration (C max ), a 3.5-fold increase in the time-to-peak concentration (t max ), and a 35% increase in total exposure (AUC) was observed. After administration of Rapamune Tablets and a high-fat meal in 24 healthy volunteers, C max , t max , and AUC showed increases of 65%, 32%, and 23%, respectively.
Absorption: Rapid, from the gastrointestinal tract. Bioavailability is approximately 14%. Rate of absorption is decreased in the presence of a high-fat diet. The rate and extent of absorption is reduced in black patients.
The mean (+/- SD) blood-to-plasma ratio of sirolimus was 36 +/- 17.9 in stable renal allograft recipients, indicating that sirolimus is extensively partitioned into formed blood elements. The mean volume of distribution of sirolimus is 12 +/- 7.52 L/kg. Sirolimus is extensively bound (approximately 92%) to human plasma proteins. In man, the binding of sirolimus was shown mainly to be associated with serum albumin (97%), (alpha) 1 -acid glycoprotein, and lipoproteins.
For more Absorption, Distribution and Excretion (Complete) data for SIROLIMUS (7 total), please visit the HSDB record page.
Metabolism / Metabolites
Sirolimus undergoes extensive metabolism in the intestinal wall and liver. Sirolimus is primarily metabolized by O-demethylation and/or hydroxylation via CYP3A4 to form seven major metabolites, including hydroxy, demethyl, and hydroxydemethyl metabolites, which are pharmacologically inactive. Sirolimus also undergoes counter-transport from enterocytes of the small intestine into the gut lumen.
Sirolimus is a substrate for both cytochrome P450 IIIA4 (CYP3A4) and P-glycoprotein. Sirolimus is extensively metabolized by O-demethylation and/or hydroxylation. Seven major metabolites, including hydroxy, demethyl, and hydroxydemethyl, are identifiable in whole blood. Some of these metabolites are also detectable in plasma, fecal, and urine samples. Glucuronide and sulfate conjugates are not present in any of the biologic matrices.
Biotransformation: Hepatic, extensive, by cytochrome p450 3A enzymes. Major metabolites include hydroxysirolimus, demethylsirolimus, and hydroxydemethyl-sirolimus.
... After incubation of sirolimus with human and pig small intestinal microsomes, five metabolites were detected using high performance liquid chromatography/electrospray-mass spectrometry: hydroxy, dihydroxy, trihydroxy, desmethyl and didesmethyl sirolimus. The same metabolites were generated by human liver microsomes and pig small intestinal mucosa in the Ussing chamber. Anti-CYP3A antibodies, as well as the specific CYP3A inhibitors troleandomycin and erythromycin, inhibited small intestinal metabolism of sirolimus, confirming that, as in the liver, CYP3A enzymes are responsible for sirolimus metabolism in the small intestine. ...
Sirolimus has known human metabolites that include 16-O-Desmethylsirolimus, 39-O-Desmethylsirolimus, 24-Hydroxy-sirolimus, 11-Hydroxy-sirolimus, 25-Hydroxy-sirolimus, 46-Hydroxy-sirolimus, and 12-Hydroxy-sirolimus.
Biological Half-Life
The mean ± SD terminal elimination half-life (t½) of sirolimus after multiple dosing in stable renal transplant patients was estimated to be about 62 ± 16 hours.
The drug has an elimination half life of 57-63 hours in kidney transplant recipients.
毒性/毒理 (Toxicokinetics/TK)
Hepatotoxicity
Serum enzyme elevations occur in a proportion of patients taking sirolimus, but the abnormalities are usually mild, asymptomatic and self-limiting, rarely requiring dose modification or discontinuation. Rare instances of cholestatic hepatitis have been reported with sirolimus use, but the clinical features of the clinically apparent liver injury due to this agent have not been well defined. Most published cases of liver injury attributed to sirolimus occurred in patients exposed to other potentially hepatotoxic agents or who have other underlying possible causes of the abnormalities such as sepsis, cancer or parenteral nutrition. Hepatic artery thrombosis has been reported to be more common with sirolimus therapy after liver transplantation, but this association is still controversial.
Likelihood score: C (probable rare cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Because almost no information is available on the use of oral sirolimus during breastfeeding, an alternate drug may be preferred, especially while nursing a newborn or preterm infant.
Sirolimus is undetectable in the bloodstream after application to the skin, so use of topical sirolimus is unlikely to affect a nursing infant. Avoid application to the nipple area and ensure that the infant's skin does not come into direct contact with the areas of skin that have been treated.
◉ Effects in Breastfed Infants
One infant was reported breastfed (extent not stated) during maternal therapy with sirolimus, tacrolimus and prednisone in unspecified dosages following a kidney-pancreas transplant. The authors who followed the mother knew of no serious side effects in the infant.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Sirolimus is 92% bound to human plasma proteins, mainly serum albumin (97%), α1-acid glycoprotein, and lipoproteins.
Interactions
Because St. John's wort (hypericum perforatum) induces the activity of CYP3A4 and P-glycoprotein and sirolimus is a substrate of both, concurrent use of St. John's wort with sirolimus may result in decreased sirolimus concentrations.
/Concurrent use of sirolimus with tacrolimus/ may cause excess mortality, graft loss and hepatic artery thrombosis (HAT) in liver transplant patients, most cases of HAT occured within 30 days post-transplantation.
/Antibiotics such as: rifabutin or rifapentine; and anticonvulsants such as: carbamazepine, phenobarbital, or phenytoin/ may decrease sirolimus concentrations due to cytochrome p450 3A4 (CYP3 A4) isoenzyme induction.
Significant increases in sirolimus clearance occur when administered with rifampin due to CYP3A4 induction by rifampin; an alternative antibacterial agent with less enzyme induction potential should be considered.
For more Interactions (Complete) data for SIROLIMUS (11 total), please visit the HSDB record page.
Non-Human Toxicity Values
LD50 Mouse ip 600 mg/kg
LD50 Mouse oral >2,500 mg/kg
参考文献

[1]. The Rapamycin-Binding Domain of the Protein Kinase mTOR is a Destabilizing Domain. J Biol Chem. 2007 May 4;282(18):13395-401.

[2]. TOR controls translation initiation and early G1 progression in yeastMol Biol Cell. 1996 Jan;7(1):25-42.

[3]. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res. 2005 Apr 15;65(8):3336-46.

[4]. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol, 2001, 3(11), 1014-1019.

其他信息
Therapeutic Uses
Sirolimus is indicated for the prevention of rejection of transplanted kidney allografts. It is recommended that sirolimus be used in a regimen with cyclosporine and corticosteroids. /Included in US product labeling/
Long-term results after percutaneous coronary intervention in the treatment of chronic total coronary occlusions is hindered by a significant rate of restenosis and reocclusion. In the treatment of relatively simple nonocclusive lesions, sirolimus-eluting stents have shown dramatically reduced restenosis rates compared with bare metal stents, but whether these results are more widely applicable is unknown. ... The use of sirolimus-eluting stents in the treatment of chronic total coronary occlusions is associated with a reduction in the rate of major adverse cardiac events and restenosis compared with bare metal stents.
Chronic renal failure triggered by calcineurin inhibitor (CNI)-based immunosuppression is a common complication after cardiac transplantation. Sirolimus and mycophenolate mofetil (MMF) are 2 newer immunosuppressive agents with no documented nephrotoxic side effects. This case report describes a patient with ongoing chronic renal failure 10 months after cardiac transplantation on cyclosporine-based immunosuppressive therapy. Conversion of the immunosuppressive regimen from cyclosporine to sirolimus and MMF resulted in freedom from acute rejection, excellent cardiac graft function and consistently improved renal function. This case illustrates the beneficial potential of sirolimus and MMF as CNI-free and safe long-term immunosuppression in a patient with chronic renal failure after heart transplantation.
Drug Warnings
/BOXED WARNING/ IMMUNOSUPPRESSION, USE IS NOT RECOMMENDED IN LIVER OR LUNG TRANSPLANT PATIENTS. Increased susceptibility to infection and the possible development of lymphoma and other malignancies may result from immunosuppression Increased susceptibility to infection and the possible development of lymphoma may result from immunosuppression. Only physicians experienced in immunosuppressive therapy and management of renal transplant patients should use Rapamune. Patients receiving the drug should be managed in facilities equipped and staffed with adequate laboratory and supportive medical resources. The physician responsible for maintenance therapy should have complete information requisite for the follow-up of the patient. The safety and efficacy of Rapamune (sirolimus) as immunosuppressive therapy have not been established in liver or lung transplant patients, and therefore, such use is not recommended. Liver Transplantation - Excess Mortality, Graft Loss, and Hepatic Artery Thrombosis (HAT): The use of Rapamune in combination with tacrolimus was associated with excess mortality and graft loss in a study in de novo liver transplant patients. Many of these patients had evidence of infection at or near the time of death. In this and another study in de novo liver transplant patients, the use of Rapamune in combination with cyclosporine or tacrolimus was associated with an increase in HAT; most cases of HAT occurred within 30 days post-transplantation and most led to graft loss or death. Lung Transplantation - Bronchial Anastomotic Dehiscence: Cases of bronchial anastomotic dehiscence, most fatal, have been reported in de novo lung transplant patients when Rapamune has been used as part of an immunosuppressive regimen.
Grapefruit juice may inhibit CYP 3A4 enzymes, leading to decreased metabolism of sirolimus; must not be taken with or used to dilute sirolimus.
Cases of bronchial anastomotic dehiscence, most of which were fatal, have been reported in de novo lung transplant patients who received sirolimus in combination with other immunosuppressants. Because safety and efficacy of sirolimus as immunosuppressive therapy in lung transplant patients have not been established, such use in not recommended by the manufacturer.
Use of sirolimus in combination with other immunosuppressants (i.e., cyclosporine, tacrolimus) has been associated with an increased risk on hepatic artery thrombosis, graft loss, and death in de novo liver transplant recipients. Because safety and efficacy of sirolimus as immunosuppressive therapy in liver transplant patients have not been established, such use is not recommended by the manufacturer.
For more Drug Warnings (Complete) data for SIROLIMUS (27 total), please visit the HSDB record page.
Pharmacodynamics
Sirolimus is an immunosuppressant drug with antifungal and antitumour effects. In animal models, sirolimus prolonged allograft survival following various organ transplants and reversed an acute rejection of heart and kidney allografts in rats. Upon oral administration of 2 mg/day and 5 mg/day, sirolimus significantly reduced the incidence of organ rejection in low- to moderate-immunologic risk renal transplant patients at six months following transplantation compared with either azathioprine or placebo. In some studies, the immunosuppressive effect of sirolimus lasted up to six months after discontinuation of therapy: this tolerization effect is alloantigen-specific. Sirolimus potently inhibits antigen-induced proliferation of T cells, B cells, and antibody production. In rodent models of autoimmune disease, sirolimus suppressed immune-mediated events associated with systemic lupus erythematosus, collagen-induced arthritis, autoimmune type I diabetes, autoimmune myocarditis, experimental allergic encephalomyelitis, graft-versus-host disease, and autoimmune uveoretinitis.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C51H79NO13
分子量
914.18
精确质量
913.555
元素分析
C, 67.01; H, 8.71; N, 1.53; O, 22.75
CAS号
53123-88-9
相关CAS号
Rapamycin;53123-88-9
PubChem CID
5284616
外观&性状
White to off-white solid powder
密度
1.2±0.1 g/cm3
沸点
973.0±75.0 °C at 760 mmHg
熔点
183-185°C
闪点
542.3±37.1 °C
蒸汽压
0.0±0.6 mmHg at 25°C
折射率
1.551
LogP
3.54
tPSA
195.43
氢键供体(HBD)数目
3
氢键受体(HBA)数目
13
可旋转键数目(RBC)
6
重原子数目
65
分子复杂度/Complexity
1760
定义原子立体中心数目
15
SMILES
O(C([H])([H])[H])[C@@]1([H])[C@@]([H])(C([H])([H])C([H])([H])[C@@]([H])(C([H])([H])[C@@]([H])(C([H])([H])[H])[C@]2([H])C([H])([H])C([C@@]([H])(C([H])=C(C([H])([H])[H])[C@]([H])([C@]([H])(C([C@]([H])(C([H])([H])[H])C([H])([H])[C@]([H])(C([H])([H])[H])C([H])=C([H])C([H])=C([H])C([H])=C(C([H])([H])[H])[C@]([H])(C([H])([H])[C@]3([H])C([H])([H])C([H])([H])[C@@]([H])(C([H])([H])[H])[C@@](C(C(N4C([H])([H])C([H])([H])C([H])([H])C([H])([H])[C@@]4([H])C(=O)O2)=O)=O)(O[H])O3)OC([H])([H])[H])=O)OC([H])([H])[H])O[H])C([H])([H])[H])=O)C1([H])[H])O[H] |c:35,66,70,t:62|
InChi Key
QFJCIRLUMZQUOT-PYYJPVDBSA-N
InChi Code
InChI=1S/C51H79NO13/c1-30-16-12-11-13-17-31(2)42(61-8)28-38-21-19-36(7)51(60,65-38)48(57)49(58)52-23-15-14-18-39(52)50(59)64-43(33(4)26-37-20-22-40(53)44(27-37)62-9)29-41(54)32(3)25-35(6)46(56)47(63-10)45(55)34(5)24-30/h11-13,16-17,25,30,32-34,36-40,42-44,46-47,53,56,60H,14-15,18-24,26-29H2,1-10H3/b13-11+,16-12+,31-17+,35-25+/t30-,32-,33-,34-,36-,37+,38+,39+,40-,42+,43+,44?,46-,47+,51-/m1/s1
化学名
(3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34, 34a-hexadecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido[2,1-c][1,4] oxaazacyclohentriacontine-1,5,11,28,29 (4H,6H,31H)-pentone
别名
AY 22989; AY22989; AY-22989; NSC-2260804; RAPA; RAP; RPM; SLM; AY 22989; SILA 9268A; WY090217; WY-090217; WY 090217; C07909; D00753; I 2190A; I-2190A; I2190A; NSC 226080; Rapamune
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~20 mg/mL (21.9 mM)
Water: <1 mg/mL
Ethanol: <1 mg/mL
溶解度 (体内实验)
体内配方 1: 2% DMSO + 30% PEG 300+5% Tween 80+ddH2O: 5 mg/mL; 悬浊液
体内配方 2: 0.5% CMC-Na + 1%Tween-80 in Saline water: 1.98 mg/mL (2.17 mM); 悬浊液
体内配方 3:10% DMSO + 90% Corn Oil: ≥ 2.08 mg/mL (2.28 mM); 澄清溶液
体内配方 4:10% EtOH + 40% PEG300 + 5% Tween-80 + 45% Saline: ≥ 2.5 mg/mL (2.73 mM); 悬浊液
体内配方 5:10% EtOH + 90% (20% SBE-β-CD in Saline): 2.5 mg/mL (2.73 mM); 悬浊液
体内配方 6:10% EtOH + 90% Corn Oil: ≥ 2.5 mg/mL (2.73 mM); 悬浊液
体内配方 7:10% DMSO + 40% PEG300 + 5% Tween-80 + 45% Saline: ≥ 2.08 mg/mL (2.28 mM); 澄清溶液
体内配方 8:10% DMSO + 90% (20% SBE-β-CD in Saline): 2.08 mg/mL (2.28 mM); 悬浊液 请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.0939 mL 5.4694 mL 10.9388 mL
5 mM 0.2188 mL 1.0939 mL 2.1878 mL
10 mM 0.1094 mL 0.5469 mL 1.0939 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
Addition of JSP191 (C-kit Antibody) to Nonmyeloablative Hematopoietic Cell Transplantation for Sickle Cell Disease and Beta-Thalassemia
CTID: NCT05357482
Phase: Phase 1/Phase 2    Status: Recruiting
Date: 2024-12-02
Total Body Irradiation and Astatine-211-Labeled BC8-B10 Monoclonal Antibody for the Treatment of Nonmalignant Diseases
CTID: NCT04083183
Phase: Phase 1/Phase 2    Status: Suspended
Date: 2024-12-02
Matched Related and Unrelated Donor Stem Cell Transplantation for Severe Combined Immune Deficiency (SCID): Busulfan-based Conditioning With h-ATG, Radiation, and Sirolimus
CTID: NCT04370795
Phase: Phase 1/Phase 2    Status: Enrolling by invitation
Date: 2024-12-02
Nonmyeloablative Peripheral Blood Mobilized Hematopoietic Precursor Cell Transplantation for Sickle Cell Disease and Beta-thalassemia in People With Higher Risk of Transplant Failure
CTID: NCT02105766
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-11-29
A Phase 1/2 Study of Intravenous Gene Transfer With an AAV9 Vector Expressing Human Beta-galactosidase in Type I and Type II GM1 Gangliosidosis
CTID: NCT03952637
Phase: Phase 1/Phase 2    Status: Recruiting
Date: 2024-11-27
View More

CD40-L Blockade for Prevention of Acute Graft-Versus-Host Disease
CTID: NCT03605927
Phase: Phase 1    Status: Completed
Date: 2024-11-27


Virotherapy and Natural History Study of KHSV-Associated Multricentric Castleman s Disease With Correlates of Disease Activity
CTID: NCT00092222
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-11-25
The Lowest Effective Dose of Post-Transplantation Cyclophosphamide in Combination With Sirolimus and Mycophenolate Mofetil as Graft-Versus-Host Disease Prophylaxis After Reduced Intensity Conditioning and Peripheral Blood Stem Cell Transplantation
CTID: NCT05436418
Phase: Phase 1/Phase 2    Status: Recruiting
Date: 2024-11-25
Phase I/II Study to Reduce Post-transplantation Cyclophosphamide Dosing for Older or Unfit Patients Undergoing Bone Marrow Transplantation for Hematologic Malignancies
CTID: NCT04959175
Phase: Phase 1/Phase 2    Status: Recruiting
Date: 2024-11-25
Donor Lymphocyte Infusion After Allogeneic Hematopoietic Cell Transplantation for High-Risk Hematologic Malignancies
CTID: NCT05327023
Phase: Phase 1/Phase 2    Status: Recruiting
Date: 2024-11-25
Optimizing PTCy Dose and Timing
CTID: NCT03983850
Phase: Phase 1/Phase 2    Status: Recruiting
Date: 2024-11-25
The Role of Sirolimus in Preventing Functional Decline in Older Adults
CTID: NCT05237687
Phase: Phase 2    Status: Recruiting
Date: 2024-11-22
225Ac-DOTA-Anti-CD38 Daratumumab Monoclonal Antibody With Fludarabine, Melphalan and Total Marrow and Lymphoid Irradiation as Conditioning Treatment for Donor Stem Cell Transplant in Patients With High-Risk Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia and Myelodysplastic Syndrome
CTID: NCT06287944
Phase: Phase 1    Status: Recruiting
Date: 2024-11-21
Siplizumab for Sickle Cell Disease Transplant
CTID: NCT06078696
Phase: Phase 1/Phase 2    Status: Recruiting
Date: 2024-11-21
High Dose Peripheral Blood Stem Cell Transplantation With Post Transplant Cyclophosphamide for Patients With Chronic Granulomatous Disease
CTID: NCT02629120
Phase: Phase 1/Phase 2    Status: Active, not recruiting
Date: 2024-11-19
Advancing Transplantation Outcomes in Children
CTID: NCT06055608
Phase: Phase 2    Status: Recruiting
Date: 2024-11-14
Combination Chemotherapy With or Without Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia
CTID: NCT00792948
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-11-13
Sirolimus in Combination With Metronomic Chemotherapy in Children With High-Risk Solid Tumors
CTID: NCT04469530
Phase: Phase 2    Status: Recruiting
Date: 2024-11-13
Study of HLA-Haploidentical Stem Cell Transplantation to Treat Clinically Aggressive Sickle Cell Disease
CTID: NCT03121001
Phase: Phase 2    Status: Recruiting
Date: 2024-11-12
Low-Dose Sirolimus to Increase Hematopoietic Function in Patients With RUNX1 Familial Platelet Disorder
CTID: NCT06261060
Phase: Phase 2    Status: Recruiting
Date: 2024-11-08
Low Dose Rapamycin in ME/CFS, Long-COVID, and Other Infection Associated Chronic Conditions
CTID: NCT06257420
Phase:    Status: Enrolling by invitation
Date: 2024-11-05
Sirolimus (Rapamune ) for Relapse Prevention in People With Severe Aplastic Anemia Responsive to Immunosuppressive Therapy
CTID: NCT02979873
Phase: Phase 2    Status: Recruiting
Date: 2024-11-04
Different Doses of Sirolimus for the Treatment of Cystic Lymphatic Malformations
CTID: NCT06673290
Phase: Phase 2/Phase 3    Status: Recruiting
Date: 2024-11-04
Sirolimus for Nosebleeds in HHT
CTID: NCT05269849
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-11-04
A Study Looking at Kidney Function in Kidney Transplant Recipients Who Are Taking Anti-rejection Medication Including Tacrolimus and With or Without Sirolimus.
CTID: NCT01363752
Phase: Phase 4    Status: Completed
Date: 2024-10-31
Haploidentical Transplant for People With Chronic Granulomatous Disease (CGD) Using Alemtuzumab, Busulfan and TBI With Post-Transplant Cyclophosphamide
CTID: NCT03910452
PhaseEarly Phase 1    Status: Recruiting
Date: 2024-10-30
RESTOR: PK/PD mTORi Inhibition in Older Adults
CTID: NCT06658093
PhaseEarly Phase 1    Status: Not yet recruiting
Date: 2024-10-26
Sirolimus and Familial Adenomatous Polyposis (FAP)
CTID: NCT03095703
Phase: Phase 2    Status: Completed
Date: 2024-10-24
Allogeneic Hematopoietic Stem Cell Transplantation for Chronic Granulomatous Disease (CGD) With an Alemtuzumab, Busulfan and TBI-based Conditioning Regimen Combined With Cytokine (IL-6, +/- IFN-gamma) Antagonists
CTID: NCT05463133
Phase: Phase 1/Phase 2    Status: Recruiting
Date: 2024-10-24
Immunotherapy in Combination With Prednisone and Sirolimus for Kidney Transplant Recipients With Unresectable or Metastatic Skin Cancer
CTID: NCT05896839
Phase: Phase 1/Phase 2    Status: Recruiting
Date: 2024-10-15
Provision of TCRγδ T Cells and Memory T Cells Plus Selected Use of Blinatumomab in Naïve T-cell Depleted Haploidentical Donor Hematopoietic Cell Transplantation for Hematologic Malignancies Relapsed or Refractory Despite Prior Transplantation
CTID: NCT02790515
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-10-09
Topical Sirolimus in Chemoprevention of Facial Squamous Cell Carcinomas in Solid Organ Transplant Recipients (SiroSkin)
CTID: NCT05860881
Phase: Phase 3    Status: Recruiting
Date: 2024-10-08
REpurposing SirolimUS in Compensated Advanced Chronic Liver Disease. the RESUS Proof of Concept Study
CTID: NCT05663944
Phase: Phase 2    Status: Completed
Date: 2024-10-01
Bone Marrow Transplantation vs Standard of Care in Patients With Severe Sickle Cell Disease (BMT CTN 1503)
CTID: NCT02766465
Phase: Phase 2    Status: Completed
Date: 2024-09-24
Graft Versus Host Disease-Reduction Strategies for Donor Blood Stem Cell Transplant Patients With Acute Leukemia or Myelodysplastic Syndrome (MDS)
CTID: NCT03970096
Phase: Phase 2    Status: Recruiting
Date: 2024-09-20
Rapamycin Treatment for ALS
CTID: NCT03359538
Phase: Phase 2    Status: Completed
Date: 2024-09-19
The Safety and Efficiency of Sirolimus in Primary Antiphospholipid Syndrome: a Randomized Control Study
CTID: NCT06504420
Phase: Phase 2    Status: Not yet recruiting
Date: 2024-09-19
Phase III Trial of Sirolimus in IBM
CTID: NCT04789070
Phase: Phase 3    Status: Recruiting
Date: 2024-09-19
Discovery of Sirolimus Sensitive Biomarkers in Blood
CTID: NCT03304678
Phase: Phase 2    Status: Recruiting
Date: 2024-09-19
Ixazomib in the Prophylaxis of Chronic Graft-versus-host Disease.
CTID: NCT03225417
Phase: Phase 1/Phase 2    Status: Active, not recruiting
Date: 2024-08-30
Sirolimus and Durvalumab for the Treatment of Stage I-IIIA Non-small Cell Lung Cancer
CTID: NCT04348292
Phase: Phase 1    Status: Terminated
Date: 2024-08-22
The Safety and Efficacy of Rapamycin on Communicating Hydrocephalus Secondary to Intraventricular Hemorrhage
CTID: NCT06563817
Phase: Phase 2    Status: Recruiting
Date: 2024-08-21
Rapamycin - Effects on Alzheimer's and Cognitive Health
CTID: NCT04629495
Phase: Phase 2    Status: Recruiting
Date: 2024-08-13
The Bioavailability of Compounded and Generic Rapamycin in Normative Aging Individuals
CTID: NCT06550271
Phase:    Status: Completed
Date: 2024-08-13
A Phase I/II GVHD Prevention Trial Combining Pacritinib With Sirolimus-Based Immune Suppression
CTID: NCT02891603
Phase: Phase 1/Phase 2    Status: Completed
Date: 2024-08-09
Daily Topical Rapamycin for Vitiligo
CTID: NCT05342519
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-08-09
A Study Testing the Use of a Perivascular Sirolimus Formulation (Sirogen) in ESRD Patients Undergoing AV Fistula Surgery
CTID: NCT05425056
Phase: Phase 3    Status: Active, not recruiting
Date: 2024-08-09
Nonmyeloablative Haploidentical Peripheral Blood Mobilized Hematopoietic Precursor Cell Transplantation for Sickle Cell Disease
CTID: NCT03077542
Phase: Phase 1/Phase 2    Status: Active, not recruiting
Date: 2024-08-07
Short Term Sirolimus Treatment and MRI of the Brain
CTID: NCT05386914
Phase: Phase 1    Status: Recruiting
Date: 2024-08-06
Assessing the Efficacy of Sirolimus in Patients With COVID-19 Pneumonia for Prevention of Post-COVID Fibrosis
CTID: NCT04948203
Phase: Phase 2/Phase 3    Status: Recruiting
Date: 2024-08-01
A Phase 1 Study of UB-VV111 With and Without Rapamycin in Relapsed/Refractory CD19+ B-cell Malignancies
CTID: NCT06528301
Phase: Phase 1    Status: Not yet recruiting
Date: 2024-08-01
Sirolimus in Previously Treated Idiopathic Multicentric Castleman Disease
CTID: NCT03933904
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-07-29
Study to Evaluate the Efficacy and Safety of Sirolimus in Subjects With Metastatic, Mismatch Repair Deficient Solid Tumors After Immunotherapy
CTID: NCT04393454
Phase: Phase 2    Status: Terminated
Date: 2024-07-25
Ph I/II Study of Allogeneic SCT for Clinically Aggressive Sickle Cell Disease (SCD)
CTID: NCT01499888
Phase: Phase 1/Phase 2    Status: Active, not recruiting
Date: 2024-07-23
Effect of Sirolimus on Molecular Alterations in Cerebral Aneurysms
CTID: NCT04141020
Phase: Phase 2    Status: Recruiting
Date: 2024-07-15
Effect of Rapamycin in Ovarian Aging
CTID: NCT05836025
Phase: Phase 2    Status: Recruiting
Date: 2024-07-15
Sirolimus for Improving Social Abilities in People With PTEN Germline Mutations
CTID: NCT06080165
Phase: Phase 1/Phase 2    Status: Withdrawn
Date: 2024-07-10
Comparison of Triple GVHD Prophylaxis Regimens for Nonmyeloablative or Reduced Intensity Conditioning Unrelated Mobilized Blood Cell Transplantation
CTID: NCT03246906
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-07-10
Rapamycin Treatment for Activated Phosphoinositide 3-Kinase δ Syndrome
CTID: NCT03383380
Phase: Phase 1/Phase 2    Status: Completed
Date: 2024-07-09
Low-dose Interleukin-2 and Rapamycin on sjögren's Syndrome
CTID: NCT05605665
Phase: Phase 1/Phase 2    Status: Completed
Date: 2024-07-09
Sirolimus or Everolimus or Temsirolimus and Vorinostat in Advanced Cancer
CTID: NCT01087554
Phase: Phase 1    Status: Active, not recruiting
Date: 2024-07-05
Itacitinib, Tacrolimus, and Sirolimus for the Prevention of GVHD in Patients With Acute Leukemia, Myelodysplastic Syndrome, or Myelofibrosis Undergoing Reduced Intensity Conditioning Donor Stem Cell Transplantation
CTID: NCT04339101
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-06-27
Cyclophosphamide and Sirolimus for the Treatment of Metastatic, RAI-refractory, Differentiated Thyroid Cancer
CTID: NCT03099356
Phase: Phase 2    Status: Recruiting
Date: 2024-06-26
Auranofin and Sirolimus in Treating Participants With Ovarian Cancer
CTID: NCT03456700
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-06-24
Phase 1/2a Clinical Trial of PR001 (LY3884961) in Patients With Parkinson's Disease With at Least One GBA1 Mutation (PROPEL)
CTID: NCT04127578
Phase: Phase 1/Phase 2    Status: Recruiting
Date: 2024-06-21
Sickle Cell Disease Transplant Using a Nonmyeloablative Approach for Patients With Anti-donor Red Cell AntibodY
CTID: NCT06358638
Phase: Phase 2    Status: Recruiting
Date: 2024-06-20
TMLI and Alemtuzumab for Treatment of Sickle Cell Disease
CTID: NCT05384756
Phase: Phase 1    Status: Recruiting
Date: 2024-06-18
Abatacept for GVHD Prophylaxis After Hematopoietic Stem Cell Transplantation for Pediatric Sickle Cell Disease
CTID: NCT02867800
Phase: Phase 1    Status: Completed
Date: 2024-06-13
Prospective Study of Rapamycin for the Treatment of SLE
CTID: NCT00779194
Phase: Phase 2    Status: Completed
Date: 2024-06-12
Cemiplimab in AlloSCT/SOT Recipients With CSCC
CTID: NCT04339062
Phase: Phase 1/Phase 2    Status: Active, not recruiting
Date: 2024-06-12
Rapalog Pharmacology (RAP PAC) Study
CTID: NCT05949658
Phase: Phase 1    Status: Recruiting
Date: 2024-05-31
Bortezomib, Total Marrow Irradiation, Fludarabine Phosphate, and Melphalan in Treating Patients Undergoing Donor Peripheral Blood Stem Cell Transplant For High-Risk Stage I or II Multiple Myeloma
CTID: NCT01163357
Phase: Phase 1    Status: Active, not recruiting
Date: 2024-05-29
Chemotherapy, Total Body Irradiation, and Post-Transplant Cyclophosphamide in Reducing Rates of Graft Versus Host Disease in Patients With Hematologic Malignancies Undergoing Donor Stem Cell Transplant
CTID: NCT03192397
Phase: Phase 1/Phase 2    Status: Active, not recruiting
Date: 2024-05-29
Safety and Durability of Sirolimus for Treatment of LAM
CTID: NCT02432560
Phase:    Status: Recruiting
Date: 2024-05-16
mTOR as Mediator of Insulin Sensitivity Study
CTID: NCT05233722
Phase: N/A    Status: Recruiting
Date: 2024-05-16
Intestinal & Multivisceral Transplantation for Unresectable Mucinous Carcinoma Peritonei (TRANSCAPE)
CTID: NCT06084780
Phase: Phase 2    Status: Not yet recruiting
Date: 2024-05-14
Minitransplants With HLA-matched Donors : Comparison Between 2 GVHD Prophylaxis Regimens
CTID: NCT01428973
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-05-09
Efficacy and Safety of Different Concentrations of Sirolimus in the Treatment of Kaposiform Hemangioendothelioma.
CTID: NCT04775173
Phase: Phase 2    Status: Completed
Date: 2024-05-07
Topical Rapamycin/Sirolimus for Complicated Vascular Anomalies and Other Susceptible Lesions
CTID: NCT04172922
Phase: Phase 1    Status: Recruiting
Date: 2024-04-17
Study of Sirolimus in Idiopathic Retroperitoneal Fibrosis
CTID: NCT04047576
Phase: Phase 2/Phase 3    Status: Recruiting
Date: 2024-04-15
Sirolimus for Cowden Syndrome With Colon Polyposis
CTID: NCT04094675
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-04-09
Sirolimus Treatment in Hospitalized Patients With COVID-19 Pneumonia
CTID: NCT04341675
Phase: Phase 2    Status: Completed
Date: 2024-04-05
Donor Peripheral Stem Cell Transplant in Treating Patients With Advanced Hematologic Cancer or Other Disorders
CTID: NCT00544115
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-04-02
Evaluating Rapamycin Treatment in Alzheimer's Disease Using Positron Emission Tomography
CTID: NCT06022068
Phase: Phase 1/Phase 2    Status: Enrolling by invitation
Date: 2024-03-26
Sirolimus and Auranofin in Treating Patients With Advanced or Recurrent Non-Small Cell Lung Cancer or Small Cell Lung Cancer
CTID: NCT01737502
Phase: Phase 1/Phase 2    Status: Completed
Date: 2024-03-25
Sirolimus for Retinal Astrocytic Hamartoma
CTID: NCT04707209
Phase: N/A    Status: Completed
Date: 2024-03-25
Phase 1/2 Clinical Trial of PR001 in Infants With Type 2 Gaucher Disease (PROVIDE)
CTID: NCT04411654
Phase: Phase 1/Phase 2    Status: Active, not recruiting
Date: 2024-03-21
Sirolimus+Abatacept+Mycophenolate Mofetil for Prophylaxis of aGVHD in Patients Receiving Haplo-HSCT Who Are Intolerant to Calcineurin Inhibitors
CTID: NCT06279494
Phase: Phase 1/Phase 2    Status: Not yet recruiting
Date: 2024-03-21
Weekly Sirolimus Therapy
CTID: NCT04861064
Phase: Phase 2    Status: Recruiting
Date: 2024-03-15
Clofarabine and Melphalan Before Donor Stem Cell Transplant in Treating Patients With Myelodysplasia, Acute Leukemia in Remission, or Chronic Myelomonocytic Leukemia
CTID: NCT01885689
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-03-15
Percutaneous Administration of Sirolimus in the Treatment of Superficial Complicated Vascular Anomalies
CTID: NCT04921722
Phase: Phase 4    Status: Recruiting
Date: 2024-03-15
Sirolimus and Azacitidine in Treating Patients With High Risk Myelodysplastic Syndrome or Acute Myeloid Leukemia That is Recurrent or Not Eligible for Intensive Chemotherapy
CTID: NCT01869114
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-03-13
Reduced Intensity, Partially HLA Mismatched BMT to Treat Hematologic Malignancies
CTID: NCT01203722
Phase: Phase 1/Phase 2    Status: Recruiting
Date: 2024-03-13
Safety Study for the Use of Rapamycin in Children With Familial Adenomatous Polyposis
CTID: NCT06308445
Phase: Phase 2    Status: Not yet recruiting
Date: 2024-03-13
PLX3397 Plus Sirolimus in Unresectable Sarcoma and Malignant Peripheral Nerve Sheath Tumors
CTID: NCT02584647
Phase: Phase 1/Phase 2    Status: Active, not recruiting
Date: 2024-03-13
Haplo Peripheral Blood Sct In GVHD Prevention
CTID: NCT04473911
Phase: Phase 1    Status: Active, not recruiting
Date: 2024-03-07
Serial Measurements of Molecular and Architectural Responses to Therapy (SMMART) PRIME Trial
CTID: NCT03878524
Phase: Phase 1    Status: Terminated
Date: 2024-03-04
Rapamycin in Combination With Low-dose Aracytin in Elderly Acute Myeloid Leukemia Patients
CTID: NCT00235560
Phase: Phase 2    Status: Completed
Date: 2024-02-29
Improving the Results of Bone Marrow Transplantation for Patients With Severe Congenital Anemias
CTID: NCT00061568
Phase: Phase 1/Phase 2    Status: Active, not recruiting
Date: 2024-02-29
Sirolimus in Combination With Metronomic Chemotherapy in Children With Recurrent and/or Refractory Solid and CNS Tumors
CTID: NCT02574728
Phase: Phase 2    Status: Recruiting
Date: 2024-02-23
Effect of mTOR Inhibition & Other Metabolism Modulating Interventions on the Elderly [SubStudy Rapa & cMRI to Evaluate Cardiac Function]
CTID: NCT04742777
Phase: Phase 2    Status: Recruiting
Date: 2024-02-23
Minimal Islet Transplant at Diabetes Onset
CTID: NCT02505893
Phase: Phase 2    Status: Completed
Date: 2024-02-22
A Phase II Study of Allo-HCT for B-Cell NHL Using Zevalin, Fludarabine and Melphalan
CTID: NCT00577278
Phase: Phase 2    Status: Completed
Date: 2024-02-16
Efficacy and Safety of Rapamycin Versus Vigabatrin in the Prevention of Tuberous Sclerosis Complex Symptoms in Infants
CTID: NCT04987463
Phase: Phase 2/Phase 3    Status: Recruiting
Date: 2024-02-08
Efficacy and Safety of Sirolimus in Active Systemic Lupus Erythematosus
CTID: NCT04582136
Phase: Phase 2    Status: Recruiting
Date: 2024-02-08
The Effects of Sirolimus in Patients With Dilated Cardiomyopathy Infected With Kaposi Sarcoma-associated Virus
CTID: NCT06236022
Phase: Phase 4    Status: Recruiting
Date: 2024-02-01
Human Lysozyme Goat Milk for the Prevention of Graft Versus Host Disease in Patients With Blood Cancer Undergoing a Donor Stem Cell Transplant
CTID: NCT04177004
Phase: Phase 1    Status: Recruiting
Date: 2024-01-30
Tolerance by Engaging Antigen During Cellular Homeostasis
CTID: NCT03504241
Phase: Phase 1    Status: Active, not recruiting
Date: 2024-01-26
Participatory Evaluation (of) Aging (With) Rapamycin (for) Longevity Study
CTID: NCT04488601
Phase: Phase 2    Status: Completed
Date: 2024-01-24
Different Doses of Sirolimus for the Maintenance Treatment of Kaposiform Hemangioendothelioma
CTID: NCT05324384
Phase: Phase 2    Status: Recruiting
Date: 2024-01-24
Testing SIROLIMUS in Beta-thalassemia Transfusion Dependent Patients
CTID: NCT03877809
Phase: Phase 2    Status: Completed
Date: 2024-01-23
Non-Myeloablative Conditioning and Bone Marrow Transplantation
CTID: NCT01850108
Phase: N/A    Status: Active, not recruiting
Date: 2024-01-10
Sirolimus to Treat Diabetic Macular Edema
CTID: NCT00711490
Phase: Phase 1/Phase 2    Status: Completed
Date: 2024-01-05
SARC031: MEK Inhibitor Selumetinib (AZD6244) in Combination With the mTOR Inhibitor Sirolimus for Patients With Malignant Peripheral Nerve Sheath Tumors
CTID: NCT03433183
Phase: Phase 2    Status: Completed
Date: 2023-12-26
Cognition, Age, and RaPamycin Effectiveness - DownregulatIon of thE mTor Pathway
CTID: NCT04200911
PhaseEarly Phase 1    Status: Completed
Date: 2023-12-22
Thal-Fabs: Reduced Toxicity Conditioning for High Risk Thalassemia
CTID: NCT05426252
Phase: Phase 1/Phase 2    Status: Recruiting
Date: 2023-12-19
Role of Sirolimus in Treatment of Microcystic , Mixed Lymphatic and Vascular Malformations
CTID: NCT06160739
Phase:    Status: Recruiting
Date: 2023-12-15
Ruxolitinib Phosphate and Chemotherapy Given Before and After Reduced Intensity Donor Stem Cell Transplant in Treating Patients With Myelofibrosis
CTID: NCT02917096
Phase: Phase 1    Status: Completed
Date: 2023-12-12
A Study Comparing the Withdrawal of Steroids or Tacrolimus in Kidney Transplant Recipients
CTID: NCT00195429
Phase: Phase 4    Status: Completed
Date: 2023-12-11
Aging Mammary Stem Cells and Breast Cancer Prevention
CTID: NCT02642094
Phase: Phase 2    Status: Terminated
Date: 2023-12-05
Nonmyeloablative Stem Cell Transplant in Children With Sickle Cell Disease and a Major ABO-Incompatible Matched Sibling Donor
CTID: NCT03214354
Phase: Phase 2    Status: Recruiting
Date: 2023-12-04
The Effect and Safety Profile of Thymoglobulin® in Primary Cardiac Transplant Recipients
CTID: NCT03292861
Phase: Phase 2    Status: Enrolling by invitation
Date: 2023-11-28
Haploidentical PBMC Transplant for Severe Congenital Anemias
CTID: NCT00977691
Phase: Phase 1/Phase 2    Status: Active, not recruiting
Date: 2023-11-28
Hemorrhagic Brainstem Cavernous Malformations Treatment With Sirolimus: a Single Centre, Randomised, Placebo-controlled Trial
CTID: NCT06091332
Phase: Phase 2    Status: Not yet recruiting
Date: 2023-11-22
Efficacy and Safety of Sirolimus in LAM
CTID: NCT00414648
Phase: Phase 3    Status: Completed
Date: 2023-11-02
Cryopreserved MMUD BM With PTCy for Hematologic Malignancies
CTID: NCT05170828
Phase: Phase 1    Status: Withdrawn
Date: 2023-11-01
Multicenter Interventional Lymphangioleiomyomatosis (LAM) Early Disease Trial
CTID: NCT03150914
Phase: Phase 3    Status: Recruiting
Date: 2023-10-30
Biomarkers in Predicting Treatment Response to Sirolimus and Chemotherapy in Patients With High-Risk Acute Myeloid Leukemia
CTID: NCT02583893
Phase: Phase 2    Status: Completed
Date: 2023-10-10
Effe
NA
CTID: null
Phase: Phase 2    Status: Trial now transitioned
Date: 2021-01-25
A multi-centre phase II trial of GvHD prophylaxis following unrelated donor stem cell transplantation comparing Thymoglobulin vs. Calcineurin inhibitor or Sirolimus-based post-transplant cyclophosphamide
CTID: null
Phase: Phase 2    Status: GB - no longer in EU/EEA
Date: 2020-09-23
LUMINA: A Phase III, Multicenter, Sham-Controlled, Randomized, Double-Masked Study Assessing the Efficacy and Safety of Intravitreal Injections of 440 µg DE-109 for the Treatment of Active, Non-Infectious Uveitis of the Posterior Segment of the Eye.
CTID: null
Phase: Phase 3    Status: Prematurely Ended
Date: 2020-04-08
A Phase 2/3, multi-center, double-blind, placebo-controlled, randomized, parallel-group, dose-response comparison of the efficacy and safety of a topical rapamycin cream for the treatment of facial angiofibromas (FA) associated with Tuberous Sclerosis Complex (TSC) in patients 6 years of age and over
CTID: null
Phase: Phase 2, Phase 3    Status: Completed
Date: 2019-11-15
TOPical sirolimus in linGUal microkystic lymphatic malformation-TOPGUN
CTID: null
Phase: Phase 2    Status: Trial now transitioned
Date: 2019-06-29
The evolution of advanced microangiopathic diabetic complications before and after simultaneous pancreas and kidney transplantation evaluated with progressive non-invasive methods
CTID: null
Phase: Phase 4    Status: Trial now transitioned
Date: 2019-06-27
Treatment of beta-thalassemia patients with rapamycin (sirolimus): from pre-clinical research to a clinical trial
CTID: null
Phase: Phase 2    Status: Completed
Date: 2019-04-17
0.1% topical sirolimus in the treatment of cutaneous microcystic lymphatic malformations in children and adults: phase II, split-body randomized, double-blind, vehicle-controlled clinical trial
CTID: null
Phase: Phase 2    Status: Ongoing
Date: 2019-02-22
Systems medicine analysis of sarcoidosis by targeting mTOR in a
CTID: null
Phase: Phase 2    Status: Prematurely Ended
Date: 2019-02-05
A personalized medicine approach for beta-thalassemia transfusion dependent patients: testing SIROLIMUS in a first pilot clinical trial.
CTID: null
Phase: Phase 2    Status: Completed
Date: 2019-01-23
A phase II trial of allogeneic peripheral blood stem cell transplantation from family haploidentical donors in patients with myelodisplastic syndrome and acute
CTID: null
Phase: Phase 2    Status: Prematurely Ended
Date: 2018-03-27
Treatment of congenital vascular malformations using
CTID: null
Phase: Phase 3    Status: Completed
Date: 2017-09-14
Rapamycin (Sirolimus) treatment for amyotrophic lateral sclerosis
CTID: null
Phase: Phase 2    Status: Completed
Date: 2017-07-14
Phase Ib/II trial to evaluate safety and efficacy of oral ixazomib in combination with sirolimus and tacrolimus in the prophylaxis of chronic graft-versus-host disease
CTID: null
Phase: Phase 1, Phase 2    Status: Ongoing
Date: 2017-03-14
Sirolimus for the treatment of severe intestinal polyposis in patients with familial adenomatous polyposis (FAP); a pilot study
CTID: null
Phase: Phase 2    Status: Prematurely Ended
Date: 2016-12-02
An open label phase II study of Sirolimus in patients with segmental overgrowth syndrome
CTID: null
Phase: Phase 2    Status: Completed
Date: 2016-10-20
Prospective pilot trial to assess a multimodal molecular targeted therapy in children, adolescent and young adults with relapsed or refractory high-grade pineoblastoma
CTID: null
Phase: Phase 2    Status: Completed
Date: 2016-04-07
Non-randomised Open Label Pilot Study of Sirolimus Therapy for Segmental Overgrowth Due to PIK3CA- Related Overgrowth
CTID: null
Phase: Phase 2    Status: Completed
Date: 2016-02-25
Phase III multicentric study evaluating the efficacy and safety of e.querySelector("font strong").innerText = 'View More' } else if(up_display === 'none' || up_display === '') { icon_angle

生物数据图片
  • Rapamycin (Sirolimus)

  • Rapamycin (Sirolimus)
  • Rapamycin (Sirolimus)
相关产品
联系我们