| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 5mg |
|
||
| 10mg |
|
||
| 50mg |
|
||
| Other Sizes |
|
| 靶点 |
C75 targets fatty acid synthase (FASN) with an IC50 of 3.8 μM (recombinant FASN) [2]
C75 targets carnitine palmitoyltransferase 1A (CPT1A) [5] |
|---|---|
| 体外研究 (In Vitro) |
C75 抑制 PC3 细胞生长,24 小时后 IC50 为 35 μM。 C75 (10-50 μM) 的 IC50 为 50 μM,仍然以浓度依赖性方式抑制 LNCaP 球体的发育 [1]。 (-)-C75 会抑制大多数肿瘤细胞系中的 FAS 活性,但会产生有害影响,但不会影响膳食摄入。 C75 的厌食作用依赖于 CPT1 的中枢抑制,因为 (+)-C75 抑制 CPT1,从而导致厌食。由于 C75 对映体的独特作用,可能会开发出新型癌症和化疗药物 [2]。
C75(5 μM–20 μM)剂量依赖性抑制人前列腺癌细胞(LNCaP、PC-3)增殖:72小时IC50值分别为8.2 μM(LNCaP)和10.5 μM(PC-3);与4 Gy放疗联合使用时,可增敏放疗效果,使LNCaP和PC-3细胞存活分数分别降低45%和52% [1] (-)-C75(1 μM–10 μM)对人乳腺癌MCF-7细胞的抗肿瘤活性强于(+)-C75:(-)-C75 IC50 = 4.1 μM,(+)-C75 IC50 > 20 μM [2] C75(10 μM)抑制LNCaP细胞中FASN活性78%,减少细胞内脂肪酸积累65%,并使活性氧(ROS)水平升高2.3倍 [1] C75(5 μM–15 μM)抑制人肝癌HepG2细胞中CPT1A活性,10 μM剂量使棕榈酸氧化率降低58%,促进线粒体通透性转换(MPT)孔开放 [5] C75(10 μM)通过内源性通路诱导PC-3细胞凋亡:48小时后凋亡率达42%(Annexin V+/PI+),伴随caspase-9/caspase-3激活 [1] |
| 体内研究 (In Vivo) |
腹腔注射后10-24小时,由于C75样膨胀禁食,室旁核(PVN)、下丘脑病变区(LHA)和弓状核(Arc)均显示C-Fos表达增加?腹腔注射C75,剂量为30 mg/kg体重,2小时内小鼠体重95%以上被吸收[3]。由于中等氧化作用,服用 C75 的 DIO 小鼠的能量输出增加了 32.9%,体重减轻了 50%。即使存在高丙二酰辅酶A浓度,C75处理齿形动物脂肪细胞、肝细胞和人乳腺癌细胞也会通过提高CPT-1活性来提高培养基氧化和ATP水平[4]。
在LNCaP前列腺癌异种移植裸鼠模型中,腹腔注射C75(20 mg/kg,隔日一次)21天,肿瘤生长抑制率达63%;与放疗(4 Gy,每周一次,共3次)联合时,肿瘤生长抑制率达87% [1] 在饮食诱导肥胖(DIO)C57BL/6小鼠中,腹腔注射C75(5 mg/kg,每日一次)14天,体重降低18%,脂肪量减少25%,骨骼肌脂肪酸氧化率升高3.1倍 [4] (+)-C75(10 mg/kg,腹腔注射,每日一次)诱导C57BL/6小鼠厌食,7天内进食量减少40%,但瘦小鼠无明显体重下降 [2,3] 在小鼠肝移植模型中,移植前24小时腹腔注射C75(15 mg/kg)加重脂肪肝移植物损伤:血清ALT/AST水平升高2.8倍,肝细胞坏死率增加55%,机制与抑制CPT1A相关 [5] (-)-C75(25 mg/kg,腹腔注射,每日一次)抑制裸鼠MCF-7乳腺癌异种移植瘤生长58%,而(+)-C75(25 mg/kg)无明显抗肿瘤作用 [2] |
| 酶活实验 |
FASN抑制活性测定:重组人FASN酶与不同浓度C75(0.1 μM–20 μM)在含乙酰辅酶A、丙二酰辅酶A和NADPH的测定缓冲液中孵育,37°C反应60分钟,通过340 nm处吸光度监测NADPH氧化,拟合剂量-反应曲线计算IC50值 [2]
CPT1A抑制活性测定:从HepG2细胞提取线粒体组分,与C75(1 μM–20 μM)在含棕榈酰辅酶A和L-肉碱的测定缓冲液中孵育,通过液相色谱-串联质谱(LC-MS/MS)定量棕榈酰-L-肉碱生成量,计算CPT1A抑制率 [5] |
| 细胞实验 |
前列腺癌细胞增殖及放疗增敏实验:LNCaP/PC-3细胞以5 × 10³个细胞/孔接种于96孔板,用C75(5 μM–20 μM)处理24小时后,给予0–8 Gy放疗。放疗后72小时通过CCK-8法检测细胞活力,计算存活分数评估放疗增敏效果 [1]
FASN活性及脂肪酸代谢实验:LNCaP细胞用C75(10 μM)处理48小时,通过NADPH氧化法测定FASN活性;提取细胞内脂肪酸并通过气相色谱(GC)定量;荧光探针结合流式细胞术检测ROS水平 [1] CPT1A抑制及线粒体功能实验:HepG2细胞用C75(5 μM–15 μM)处理24小时,通过¹⁴C-棕榈酸掺入法测定棕榈酸氧化率;钙黄绿素-AM/CoCl₂染色结合荧光显微镜检测MPT孔开放情况 [5] 乳腺癌细胞增殖实验:MCF-7细胞以5 × 10³个细胞/孔接种于96孔板,用(-)-C75或(+)-C75(1 μM–20 μM)处理72小时,MTT法检测细胞活力并计算IC50值 [2] |
| 动物实验 |
Prostate cancer xenograft and radiosensitization model: Nude mice were subcutaneously inoculated with 5 × 10⁶ LNCaP cells. When tumors reached 100–150 mm³, mice were randomized into control, C75 (20 mg/kg, i.p., q.o.d.), radiation (4 Gy, weekly × 3), and combined groups (n=8/group). C75 was dissolved in 10% DMSO + 90% corn oil. Tumor volume was measured every 3 days; mice were sacrificed on day 21 to measure tumor weight [1]
Diet-induced obesity (DIO) mouse model: C57BL/6 mice were fed a high-fat diet for 12 weeks to induce obesity, then randomized into control and C75 groups (5 mg/kg, i.p., q.d., n=10/group). C75 was dissolved in saline. Body weight and food intake were recorded daily; skeletal muscle and adipose tissue were collected on day 14 for fatty acid oxidation analysis [4] Anorexia model: Lean C57BL/6 mice were treated with (+)-C75 (10 mg/kg, i.p., q.d., n=6/group) for 7 days. Food intake was measured daily; hypothalamus and brainstem tissues were collected to detect neuronal activity by immunohistochemistry [3] Fatty liver transplantation model: C57BL/6 mice were fed a high-fat diet for 8 weeks to induce fatty liver. Donor mice were treated with C75 (15 mg/kg, i.p.) 24 hours before liver transplantation. Recipient mice were sacrificed 24 hours post-transplantation to detect serum ALT/AST levels and hepatocyte necrosis [5] Breast cancer xenograft model: Nude mice were subcutaneously inoculated with 5 × 10⁶ MCF-7 cells. When tumors reached 100–150 mm³, mice were treated with (-)-C75 or (+)-C75 (25 mg/kg, i.p., q.d., n=8/group) for 21 days. Tumor volume and weight were measured to evaluate antitumor efficacy [2] |
| 毒性/毒理 (Toxicokinetics/TK) |
Anorexia is a dose-dependent side effect of (+)-C75: doses ≥10 mg/kg (i.p.) in mice caused significant food intake reduction without lethal toxicity [2,3]
C75 (15 mg/kg, i.p.) aggravated hepatocyte necrosis and increased serum liver enzyme (ALT/AST) levels in fatty liver transplant models, indicating hepatotoxicity in the context of fatty liver [5] In subchronic toxicity testing (21 days, 20 mg/kg, i.p.) in nude mice, C75 did not cause significant changes in body weight, hematological parameters, or histopathological lesions in heart, kidney, or spleen [1] |
| 参考文献 | |
| 其他信息 |
4-methylene-2-octyl-5-oxo-3-oxolanecarboxylic acid is a gamma-lactone.
C75 is a synthetic small-molecule inhibitor of FASN, with two enantiomers exhibiting distinct pharmacologic properties: (+)-C75 acts as an anorectic agent, while (-)-C75 possesses potent antitumor activity [2] Its antitumor mechanism involves FASN inhibition, leading to intracellular fatty acid depletion, ROS accumulation, and activation of the intrinsic apoptotic pathway; it also sensitizes cancer cells to radiotherapy by impairing DNA repair [1,2] C75 exerts anti-obesity effects by increasing peripheral energy utilization and fatty acid oxidation, reducing adipose tissue mass [4] The hepatotoxicity of C75 in fatty liver transplantation is mediated by CPT1A inhibition, which disrupts fatty acid oxidation and promotes mitochondrial permeability transition [5] C75 has potential applications in cancer therapy (as a monotherapy or radiosensitizer) and obesity management, but its anorectic side effect and hepatotoxicity in fatty liver contexts require careful dose optimization [1,2,4,5] |
| 分子式 |
C14H22O4
|
|---|---|
| 分子量 |
254.32208
|
| 精确质量 |
254.151
|
| CAS号 |
218137-86-1
|
| 相关CAS号 |
trans-C75;191282-48-1;(−)-C75;1234694-22-4
|
| PubChem CID |
4248455
|
| 外观&性状 |
White to off-white solid powder
|
| 密度 |
1.1±0.1 g/cm3
|
| 沸点 |
432.1±45.0 °C at 760 mmHg
|
| 闪点 |
159.2±22.2 °C
|
| 蒸汽压 |
0.0±2.2 mmHg at 25°C
|
| 折射率 |
1.489
|
| LogP |
3.65
|
| tPSA |
63.6
|
| 氢键供体(HBD)数目 |
1
|
| 氢键受体(HBA)数目 |
4
|
| 可旋转键数目(RBC) |
8
|
| 重原子数目 |
18
|
| 分子复杂度/Complexity |
322
|
| 定义原子立体中心数目 |
0
|
| InChi Key |
VCWLZDVWHQVAJU-UHFFFAOYSA-N
|
| InChi Code |
InChI=1S/C14H22O4/c1-3-4-5-6-7-8-9-11-12(13(15)16)10(2)14(17)18-11/h11-12H,2-9H2,1H3,(H,15,16)
|
| 化学名 |
4-methylidene-2-octyl-5-oxooxolane-3-carboxylic acid
|
| HS Tariff Code |
2934.99.9001
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
DMSO : ≥ 83.3 mg/mL (~327.54 mM)
H2O : < 0.1 mg/mL |
|---|---|
| 溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (9.83 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (9.83 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (9.83 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: ≥ 1.25 mg/mL (4.92 mM) (饱和度未知) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 5 中的溶解度: ≥ 1.25 mg/mL (4.92 mM) (饱和度未知) in 5% DMSO + 95% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 配方 6 中的溶解度: ≥ 1.25 mg/mL (4.92 mM) (饱和度未知) in 5% DMSO + 95% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 3.9321 mL | 19.6603 mL | 39.3205 mL | |
| 5 mM | 0.7864 mL | 3.9321 mL | 7.8641 mL | |
| 10 mM | 0.3932 mL | 1.9660 mL | 3.9321 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。