CTEP (RO4956371)

别名: RO-4956371; CTEP; RO4956371; 871362-31-1; 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine; mGluR5 inhibitor; CTEP (RO4956371); 2-chloro-4-[2-[2,5-dimethyl-1-[4-(trifluoromethoxy)phenyl]imidazol-4-yl]ethynyl]pyridine; E3BWG5775S; CHEMBL3410223; RO 4956371; 2-氯-4-[[2,5-二甲基-1-[4-(三氟甲氧基)苯基]-1H-咪唑-4-基]乙炔基]吡啶; mGlu5受体变构拮抗剂CTEP
目录号: V1084 纯度: ≥98%
CTEP(也称为 RO4956371;RO 4956371;RO-4956371)是一种长效、口服生物可利用的代谢型谷氨酸受体 5 (mGlu5) 受体的变构拮抗剂,具有重要的生物活性。
CTEP (RO4956371) CAS号: 871362-31-1
产品类别: GluR
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
2mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
CTEP(也称为 RO4956371;RO 4956371;RO-4956371)是一种长效、口服生物可利用的代谢型谷氨酸受体 5 (mGlu5) 受体变构拮抗剂,具有重要的生物活性。它抑制 mGlu5 的 IC50 为 2.2 nM,并且对 mGlu5 的选择性比其他 mGlu 受体高 1000 倍。
生物活性&实验参考方法
靶点
mGlu5 receptor (IC50 = 2.2 nM)
体外研究 (In Vitro)
在稳定表达人 mGlu5 的 HEK293 细胞中,CTEP (RO 4956371) 抑制君子氨酸诱导的 Ca2+ 动员,IC50 为 11.4 nM,并抑制 [3H]IP 积聚,IC50 为 6.4 nM。在稳定表达人 mGlu5 的 HEK293 细胞中,CTEP (RO 4956371) 可抑制人 mGlu5 的组成活性大约 50%,IC50 为 40.1 nM[1]。
体内研究 (In Vivo)
在接受焦虑治疗的小鼠中,CTEP (RO 4956371) 在 0.1 mg/kg 和 0.3 mg/kg 剂量下显着有效。在 Vogel 冲突饮酒测试中,CTEP (RO 4956371) 在较低剂量下没有影响,但在 0.3 和 1.0 mg/kg 时显着延长饮酒时间。小鼠中基于血浆和全脑匀浆中总药物浓度的 B/P 比为 2.6,而 CTEP (RO 4956371)(口服)的半衰期为 18 小时。将 CTEP (RO 4956371) 以生理盐水/吐温载体中的微悬浮液形式单次口服剂量 4.5 和 8.7 mg/kg 给予成年 C57BL/6 小鼠后,CTEP (RO 4956371) 被迅速吸收,并在约 30 分钟内达到接近最大暴露量。成年小鼠以每 48 小时口服 2 mg/kg 的剂量长期服用两个月,其脑部暴露的最低 CTEP (RO 4956371) 为 240 ng/g。 CTEP (RO 4956371) 在 mGlu5 表达已知的小鼠大脑区域中完全取代 [3H]ABP688,在全脑匀浆中评估时,导致平均化合物浓度为 77.5 ng/g 的剂量可以实现 50% 的取代[1]。在小鼠中,使用 CTEP(RO 4956371;2 mg/kg,po bid)每 48 小时可实现连续 mGlu5 占据。 Fmr1 敲除小鼠的海马长期抑郁加剧、蛋白质合成过多和听源性癫痫发作可通过 CTEP (RO 4956371)(2 mg/kg,口服)治疗得到纠正[2]。
酶活实验
对于所有滤过性放射性配体结合试验,表达目标受体或受体组合的膜制剂在放射性配体结合缓冲液(15 mM Tris-HCl, 120 mM NaCl, 5 mM KCl, 1.25 mM CaCl2和1.25 mM MgCl2, pH 7.4)中重悬,膜悬液与适当浓度的放射性配体和未标记药物混合在96孔板中,总量为200 μL,在适当温度下孵育60分钟。在孵育结束时,将膜过滤到Whatman unfilter上,用0.1%聚乙烯亚胺在ish缓冲液(50 mM tris - hcl, pH 7.4)中预孵育,用Filtermate 196收集机洗涤,并用冰冷的tris缓冲液洗涤三次。每孔加入45 μL MicroScint 40,振荡20 min后,在Topcount微孔板闪烁计数器上定量过滤上捕获的放射性。在中试实验中确定每个检测的膜浓度和孵育时间。[1]
动物实验
Drug treatment CTEP was formulated as a microsuspension in vehicle (0.9 % NaCl, 0.3% Tween-80). Chronic treatment consisted in once per 48 h dosing at 2 mg/kg per os (p.o.) in a volume of 10 ml/kg. In animals younger than P30, acute dosing (for LTD and AGS experiments) was s.c. [2]
Electrophysiology [2]
Fmr1 KO and wild-type littermate controls were treated acutely (s.c., 24 hours before euthanasia) or chronically (every 48 hours p.o. for 4-5 weeks) with CTEP or vehicle. 350 µm thick transverse hippocampal slices were prepared in ice-cold dissection buffer (in mM: 87 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 0.5 CaCl2, 7 MgCl2, 75 sucrose, 10 dextrose, 1.3 ascorbic acid), and the CA3 region was removed. Slices were left to recover for 3 hours at 32ºC in ACSF (in mM: 124 NaCl, 5 KCl, 1.23 NaH2PO4, 26 NaHCO3, 10 dextrose, 1 MgCl2, 2 CaCl2) before recordings. Extracellular field potentials were recorded in stratum radiatum of CA1 in response to Schaffer collateral stimulation. Evoked responses (initial slope) were measured every 30 seconds for a 20 minute baseline, and 50 µM DHPG ((RS)-3,5-dihydroxyphenylglycine) was applied for 5 minutes to induce LTD. Experiments where baselines drifted more than 5% over 20 minutes were excluded. Maximal transient depression (MTD) for a slice was defined as 4 the time point post-DHPG application with the greatest depression within each individual slice. P25-P30 mice were used for acute experiments, and P58-P65 mice were used for chronic experiments. For clarity of presentation, each two points (one minute) were averaged together and represented as a single point.
Audiogenic seizure [2]
Susceptibility to audiogenic seizure was tested in Fmr1 KO and WT animals on the C57BL/6J and FVB genetic background. C57BL/6J mice were tested between P18 and 5 P22, and FVB mice were tested between P30 and P60. All animals received vehicle or CTEP at 2 mg/kg (p.o. in FVB, s.c. in C57BL/6J) 4 h before testing. Following 1 min habituation to the behavioral chamber, animals were exposed to a 120 dB sound emitted by a personal alarm siren (modified personal alarm, Radioshack model 49-1010, powered from a DC converter). Seizures were scored for incidence during 2 min or until animals reached one of the AGS endpoint (status epilepticus, respiratory arrest, death).
Characterization of CTEP pharmacological properties [2]
The concentration of CTEP in the plasma or brain of treated animals was determined using a combined HPLC/MS method as described in Lindemann et al. (2011). In vivo mGlu5 receptor occupancy was evaluated with [3H]-ABP688 as described in Lindemann et al. (2011). Simulation of the plasma levels and receptor occupancy during chronic dosing was performed in GastroPlus software version 6.1 using a compartmental pharmacokinetic model linked to an Emax model for occupancy estimation. The plasma pharmacokinetics for multiple dosing was simulated with a model fit to single dose data and verified to match the sparse concentration measurements made during the chronic study. The occupancy model used parameters estimated from plasma levels and occupancies measured in the vivo binding study (Emax = 92%, EC50 = 12.1 ng/ml).
Metabolic labeling [2]
Metabolic labeling was performed essentially as described in Osterweil et al. (Osterweil et al., 2010). Briefly, 500 µm thick hippocampal slices were prepared from 4-week old animals and incubated at 32.5°C in ACSF (124 mM NaCl, 3 mM KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 1.0 mM MgCl2, 2.0 mM CaCl2 and 10 mM dextrose, saturated with 95% O2 and 5% CO2). Following a 3.5 h recovery period, actynomycin D at a final concentration of 25 µM and either CTEPCTEP at a final concentration of 10 µM or vehicle were added, and the slices were incubated for 30 min. A mix of [ 35S]-labeled amino-acids (Express protein labeling mix) was added to the bath at a concentration of 9.5 µM (11 µCi/ml). Slices were incubated for 30 min after which the incorporation of radioactive amino acids was stopped by transferring the slices into icecold ACSF. The sections were homogenized in protein lysis buffer (10 mM HEPES pH7.4, 2 mM EDTA, 2 mM EGTA, 1% TX100 and protease inhibitor, and unincorporated amino acids were removed by precipitating proteins in the homogenate with trichloroacetic acid. The incorporated radioactivity was measured by liquid scintillation counting with quench correction and normalized to protein concentration and to the specific radioactivity of the reaction medium.
Dissolved in 0.9% NaCl (w/v) and 0.3% Tween 80 (v/v) solution; 1 mg/kg; oral gavage
Male Sprague-Dawley rats
参考文献

[1]. CTEP: a novel, potent, long-acting, and orally bioavailable metabotropic glutamate receptor 5 inhibitor. J Pharmacol Exp Ther. 2011 Nov;339(2):474-86.

[2]. Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron. 2012 Apr 12;74(1):49-56.

其他信息
The metabotropic glutamate receptor 5 (mGlu5) is a glutamate-activated class C G protein-coupled receptor widely expressed in the central nervous system and clinically investigated as a drug target for a range of indications, including depression, Parkinson's disease, and fragile X syndrome. Here, we present the novel potent, selective, and orally bioavailable mGlu5 negative allosteric modulator with inverse agonist properties 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP). CTEP binds mGlu5 with low nanomolar affinity and shows >1000-fold selectivity when tested against 103 targets, including all known mGlu receptors. CTEP penetrates the brain with a brain/plasma ratio of 2.6 and displaces the tracer [(3)H]3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-methyl-oxime (ABP688) in vivo in mice from brain regions expressing mGlu5 with an average ED(50) equivalent to a drug concentration of 77.5 ng/g in brain tissue. This novel mGlu5 inhibitor is active in the stress-induced hyperthermia procedure in mice and the Vogel conflict drinking test in rats with minimal effective doses of 0.1 and 0.3 mg/kg, respectively, reflecting a 30- to 100-fold higher in vivo potency compared with 2-methyl-6-(phenylethynyl)pyridine (MPEP) and fenobam. CTEP is the first reported mGlu5 inhibitor with both long half-life of approximately 18 h and high oral bioavailability allowing chronic treatment with continuous receptor blockade with one dose every 48 h in adult and newborn animals. By enabling long-term treatment through a wide age range, CTEP allows the exploration of the full therapeutic potential of mGlu5 inhibitors for indications requiring chronic receptor inhibition.[1]
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Previous studies have implicated mGlu5 in the pathogenesis of the disease, but a crucial unanswered question is whether pharmacological mGlu5 inhibition is able to reverse an already established FXS phenotype in mammals. Here we have used the novel, potent, and selective mGlu5 inhibitor CTEP to address this issue in the Fmr1 knockout mouse. Acute CTEP treatment corrects elevated hippocampal long-term depression, protein synthesis, and audiogenic seizures. Chronic treatment that inhibits mGlu5 within a receptor occupancy range of 81% ± 4% rescues cognitive deficits, auditory hypersensitivity, aberrant dendritic spine density, overactive ERK and mTOR signaling, and partially corrects macroorchidism. This study shows that a comprehensive phenotype correction in FXS is possible with pharmacological intervention starting in young adulthood, after development of the phenotype. It is of great interest how these findings may translate into ongoing clinical research testing mGlu5 inhibitors in FXS patients.[2]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C19H13CLF3N3O
分子量
391.77
精确质量
391.07
元素分析
C, 58.25; H, 3.34; Cl, 9.05; F, 14.55; N, 10.73; O, 4.08
CAS号
871362-31-1
相关CAS号
871362-31-1
PubChem CID
11646823
外观&性状
Light yellow to yellow solid powder
LogP
4.835
tPSA
39.94
氢键供体(HBD)数目
0
氢键受体(HBA)数目
6
可旋转键数目(RBC)
4
重原子数目
27
分子复杂度/Complexity
568
定义原子立体中心数目
0
InChi Key
GOHCTCOGYKAJLZ-UHFFFAOYSA-N
InChi Code
InChI=1S/C19H13ClF3N3O/c1-12-17(8-3-14-9-10-24-18(20)11-14)25-13(2)26(12)15-4-6-16(7-5-15)27-19(21,22)23/h4-7,9-11H,1-2H3
化学名
2-chloro-4-[2-[2,5-dimethyl-1-[4-(trifluoromethoxy)phenyl]imidazol-4-yl]ethynyl]pyridine
别名
RO-4956371; CTEP; RO4956371; 871362-31-1; 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine; mGluR5 inhibitor; CTEP (RO4956371); 2-chloro-4-[2-[2,5-dimethyl-1-[4-(trifluoromethoxy)phenyl]imidazol-4-yl]ethynyl]pyridine; E3BWG5775S; CHEMBL3410223; RO 4956371;
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮和光照。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 78 mg/mL (199.1 mM)
Water:<1 mg/mL
Ethanol: 10 mg/mL (25.5 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (6.38 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: 2.5 mg/mL (6.38 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (6.38 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


配方 4 中的溶解度: 30% propylene glycol, 5% Tween 80, 65% D5W: 6 mg/mL

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.5525 mL 12.7626 mL 25.5252 mL
5 mM 0.5105 mL 2.5525 mL 5.1050 mL
10 mM 0.2553 mL 1.2763 mL 2.5525 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT03269331 Completed Behavioral: CTEP EBP Immersion Evidence-Based Practice
Nurse's Role
David Grant U.S. Air Force Medical Center September 15, 2017
NCT00093457 Completed Drug: sorafenib tosylate Prostate Cancer NCIC Clinical Trials Group August 10, 2004 Phase 2
NCT01039155 August 10, 2004 Drug: Azacitidine
Other: Laboratory Biomarker Analysis
Drug: Oxaliplatin
Other: Pharmacological Study
Adult Solid Neoplasm
Hematopoietic and Lymphoid Cell Neoplasm
National Cancer Institute (NCI) December 2009 Phase 1
NCT01281852 Completed Drug: Cisplatin
Other: Laboratory Biomarker Analysis
Drug: Paclitaxel
Drug: Veliparib
Cervical Adenocarcinoma
Cervical Adenosquamous Carcinoma
Cervical Squamous Cell Carcinoma, Not Otherwise Specified
National Cancer Institute (NCI) March 14, 2011 Phase 1
NCT00117169 Completed Procedure: multi-detector helical
computed tomography
Pulmonary Embolism University Hospital, Geneva January 2005 Not Applicable
生物数据图片
相关产品
联系我们