Glutamic Acid

别名: 谷氨酸;L-谷氨酸;alpha-氨基戊二酸;麸氨酸;L(+)-谷氨酸;氨基戊二酸;L-2-氨基戊二酸;L-α-氨基戊二酸;L-谷氨酸 标准品;L-谷氨酸(RG);L-天门冬氨酸钠;谷氨酸 EP标准品;谷氨酸 USP标准品;(S)-2-氨基戊二酸;L-1-氨基丙烷-1,3-二羧酸;L-2-氨基;L-麸氨酸;α-氨基戊二酸;麸酸;麩酸;谷氨酸杂质 标准品;食品级; L-谷氨酸生产厂家;谷氨酸;α-氨基戊二酸;麸氨酸
目录号: V12835 纯度: ≥98%
L-谷氨酸是一种兴奋性氨基酸 (AA) 神经递质,也是谷氨酸受体所有亚型(代谢型红藻氨酸、NMDA 和 AMPA)的激动剂。
Glutamic Acid CAS号: 56-86-0
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Glutamic Acid:

  • L-谷氨酸钠
  • L-Glutamic acid-1-13C (L-谷氨酸 1-13C)
  • L-Glutamic acid-15N,d5 (L-glutamic acid 15N,d5)
  • L-Glutamic acid-15N (L-谷氨酸 15N)
  • FMOC-L-Glutamic Acid-13C5,15N-5-t-butyl ester
  • L-Glutamic acid-13C5,15N,d5 (L-谷氨酸 13C5,15N,d5)
  • L-Glutamic acid-13C5,15N (L-谷氨酸 13C5,15N)
  • L-Glutamic acid-13C5 hydrate salt
  • L-Glutamic acid-13C5 (L-谷氨酸 13C5)
  • DL-Glutamic acid-d5
  • L-Glutamic acid-d5 (L-谷氨酸 d5)
  • N-Acetyl-L-glutamic acid-d5
  • DL-Glutamic acid-d3 (DL-glutamic acid d3)
  • L-Glutamic acid-d3 (L-谷氨酸 d3)
  • L-Glutamic acid-13C2 (L-谷氨酸-13C2)
  • L-Glutamic acid-13C (L-谷氨酸 13C)
  • L-Glutamic acid-5-13C (L-谷氨酸 5-13C)
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
L-谷氨酸是一种兴奋性氨基酸 (AA) 神经递质,也是谷氨酸受体所有亚型(代谢型红藻氨酸、NMDA 和 AMPA)的激动剂。它对多巴胺能神经末梢释放 DA 具有激动作用。
生物活性&实验参考方法
体外研究 (In Vitro)
L-谷氨酸可以通过在突触前水平吸收谷氨酸来影响[3H]DA的释放。即使存在 0.5 μM 河豚毒素,50 μM L-谷氨酸仍然可以诱导 [3H]DA 的释放 [1]。
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Absorbed from the lumen of the small intestine into the enterocytes.Absorption is efficient and occurs by an active transport mechanism.
/MILK/ Previous short observational studies on the free amino acid (FAA) content of human milk have shown that glutamine and glutamic acid increase in the first 4 to 6 weeks of life. Changes in human milk content of free amino acids (FAAs) was determined at colostrum, 1 month, and 3 months of lactation in 16 healthy lactating women after delivery of full-term infants. Milk was collected at the end of each feeding (hindmilk) during 24 hours. Glutamic acid and taurine were the most abundant FAAs at colostrum. Although taurine remained stable throughout lactation, glutamic acid (the prevalent FAA) and glutamine increased approximately 2.5 and 20 times, respectively, with progressing lactation representing more than 50% of total FAA at 3 months. The content of essential FAA was also stable, so the change in total FAA content was almost entirely due to the changes in glutamic acid and glutamine. Breast-fed infants are supplied with progressively increasing amounts of glutamine and glutamic acid throughout lactation. The increasing intake of glutamic acid and glutamine could benefit breast-fed infants with molecules that are likely to protect the enteral mucosa and act as neurotransmitters and as a source of nitrogen.
In this report, (13)N -labeled L-glutamine and L-glutamic acid was synthesized by an enzymatic method ... . Organ distribution studies and whole body scans in mongrel dogs demonstrated low myocardial uptake of glutamine and glutamic acid and that the liver demonstrated a greater uptake of glutamine than glutamic acid or ammonia.
The measurement of the intestinal metabolism of the nitrogen moiety of glutamic acid has been investigated by oral ingestion of l-[(15)N]glutamic acid and sampling of arterialized blood. Measurements have been made in six normal adults weighing an average of 72.8 kg ingesting 100 mg of l-[(15)N]glutamic acid after an overnight fast. Measurement of the enrichment of arterial glutamic acid, glutamine and alanine was by gas chromatography-mass spectrometry. Isotopic enrichment of the amino acids was followed for 150 min after the ingestion of the amino acid. Arterialized venous blood amino acid concentrations, measured by HPLC, demonstrated no significant changes during the course of the experiment. From the observed appearance of label in arterialized glutamic acid, alanine and glutamine, little luminal glutamic acid reaches the extracellular pool. The majority of the administered nitrogen label appears in the arterial alanine and glutamine components.
Metabolism / Metabolites
Hepatic
Cortical excitability reflects a balance between excitation and inhibition. Glutamate is the main excitatory and GABA the main inhibitory neurotransmitter in the mammalian cortex. Changes in glutamate and GABA metabolism may play important roles in the control of cortical excitability. Glutamate is the metabolic precursor of GABA, which can be recycled through the tricarboxylic acid cycle to synthesize glutamate. GABA synthesis is unique among neurotransmitters, having two separate isoforms of the rate-controlling enzyme, glutamic acid decarboxylase. The need for two separate genes on two chromosomes to control GABA synthesis is unexplained. Two metabolites of GABA are present in uniquely high concentrations in the human brain. Homocarnosine and pyrrolidinone have a major impact on GABA metabolism in the human brain. Both of these GABA metabolites have anticonvulsant properties and can have a major impact on cortical excitability. /Glutamate, GABA/
The measurement of the intestinal metabolism of the nitrogen moiety of glutamic acid has been investigated by oral ingestion of l-[(15)N]glutamic acid and sampling of arterialized blood. Measurements have been made in six normal adults weighing an average of 72.8 kg ingesting 100 mg of l-[(15)N]glutamic acid after an overnight fast. Measurement of the enrichment of arterial glutamic acid, glutamine and alanine was by gas chromatography-mass spectrometry. Isotopic enrichment of the amino acids was followed for 150 min after the ingestion of the amino acid. Arterialized venous blood amino acid concentrations, measured by HPLC, demonstrated no significant changes during the course of the experiment. From the observed appearance of label in arterialized glutamic acid, alanine and glutamine, little luminal glutamic acid reaches the extracellular pool. The majority of the administered nitrogen label appears in the arterial alanine and glutamine components.
Hepatic
参考文献
[1]. Giorguieff MF, et al. Presynaptic effect of L-glutamic acid on the release of dopamine in rat striatal slices. Neurosci Lett. 1977 Oct;6(1):73-7.
其他信息
L-glutamic acid is an optically active form of glutamic acid having L-configuration. It has a role as a nutraceutical, a micronutrient, an Escherichia coli metabolite, a mouse metabolite, a ferroptosis inducer and a neurotransmitter. It is a glutamine family amino acid, a proteinogenic amino acid, a glutamic acid and a L-alpha-amino acid. It is a conjugate acid of a L-glutamate(1-). It is an enantiomer of a D-glutamic acid.
A peptide that is a homopolymer of glutamic acid.
L-Glutamate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
L-Glutamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Glutamic Acid has been reported in Streptomyces akiyoshiensis, Pinus densiflora, and other organisms with data available.
Glutamic Acid is a non-essential alpha-amino acid and excitatory neurotransmitter. Glutamic acid can serve as a precursor for the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA).
Glutamic acid (Glu), also referred to as glutamate (the anion), is one of the 20 proteinogenic amino acids. It is not among the essential amino acids. Glutamate is a key molecule in cellular metabolism. In humans, dietary proteins are broken down by digestion into amino acids, which serves as metabolic fuel or other functional roles in the body. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: * Damage to mitochondria from excessively high intracellular Ca2+. * Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimer's disease. glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization.
A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM.
See also: Monosodium Glutamate (active moiety of); Glutamic Acid Hydrochloride (has salt form); Glatiramer Acetate (monomer of) ... View More ...
Drug Indication
Considered to be nature's "Brain food" by improving mental capacities; helps speed the healing of ulcers; gives a "lift" from fatigue; helps control alcoholism, schizophrenia and the craving for sugar.
Mechanism of Action
Glutamate activates both ionotropic and metabotropic glutamate receptors. The ionotropic ones being non-NMDA (AMPA and kainate) and NMDA receptors. Free glutamic acid cannot cross the blood-brain barrier in appreciable quantities; instead it is converted into L-glutamine, which the brain uses for fuel and protein synthesis. It is conjectured that glutamate is involved in cognitive functions like learning and memory in the brain, though excessive amounts may cause neuronal damage associated in diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimer's disease. Also, the drug phencyclidine (more commonly known as PCP) antagonizes glutamate at the NMDA receptor, causing behavior reminiscent of schizophrenia. Glutamate in action is extremely difficult to study due to its transient nature.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C5H9NO4
分子量
147.1293
精确质量
147.053
CAS号
56-86-0
相关CAS号
L-Glutamic acid monosodium salt;142-47-2;L-Glutamic acid-1-13C;81201-99-2;L-Glutamic acid-15N;21160-87-2;L-Glutamic acid-13C5,15N;202468-31-3;L-Glutamic acid-13C5;55443-55-5;L-Glutamic acid-d5;2784-50-1;L-Glutamic acid-d3;203805-84-9;L-Glutamic acid-13C;115473-51-3;L-Glutamic acid-13C2;115473-56-8;L-Glutamic acid-13C5,15N,d5;1420815-74-2;L-Glutamic acid-5-13C;81202-00-8;L-Glutamic acid-15N,d5
PubChem CID
33032
外观&性状
White to off-white solid powder
密度
1.4±0.1 g/cm3
沸点
333.8±32.0 °C at 760 mmHg
熔点
205 °C (dec.)(lit.)
闪点
155.7±25.1 °C
蒸汽压
0.0±1.5 mmHg at 25°C
折射率
1.522
LogP
-1.43
tPSA
100.62
氢键供体(HBD)数目
3
氢键受体(HBA)数目
5
可旋转键数目(RBC)
4
重原子数目
10
分子复杂度/Complexity
145
定义原子立体中心数目
1
SMILES
C(CC(=O)O)[C@@H](C(=O)O)N
InChi Key
WHUUTDBJXJRKMK-VKHMYHEASA-N
InChi Code
InChI=1S/C5H9NO4/c6-3(5(9)10)1-2-4(7)8/h3H,1-2,6H2,(H,7,8)(H,9,10)/t3-/m0/s1
化学名
(2S)-2-aminopentanedioic acid
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
H2O : ~6.25 mg/mL (~42.48 mM)
DMSO :< 1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: 9.09 mg/mL (61.78 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶。 (<60°C).

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 6.7967 mL 33.9836 mL 67.9671 mL
5 mM 1.3593 mL 6.7967 mL 13.5934 mL
10 mM 0.6797 mL 3.3984 mL 6.7967 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

联系我们