Monosodium glutamate

别名: MSG; Sodium glutamate; Monosodium glutamate 谷氨酸钠;L-谷氨酸钠水合物;L-谷氨酸单钠盐一水合物;谷氨酸单钠盐;L-谷氨酸钠;L-谷氨酸单钠盐;L-氨基戊二酸钠;麸氨酸钠;味精;L-谷氨酸一钠盐;L-谷氨酸钠盐,水合物;L-谷氨酸单钠盐水合物;L-GLUTAMIC ACID ;单钠盐 水合物;味精;谷氨酸钠
目录号: V16764 纯度: ≥98%
L-Glutamic Acid monosodium salt 是一种兴奋性氨基酸 (AA) 神经递质,也是所有谷氨酸受体亚型(代谢型红藻氨酸、NMDA 和 AMPA)的激动剂。
Monosodium glutamate CAS号: 142-47-2
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
100mg
250mg
500mg
Other Sizes

Other Forms of Monosodium glutamate:

  • γ-Carboxy-DL-glutamic acid
  • DL-Glutamic acid (DL-glutamic acid)
  • Boc-Glu(OMe)-OMe (N-tert-Butoxycarbonyl-L-glutamic acid dimethyl ester)
  • L-Glutamic acid hemimagnesium salt tetrahydrate
  • L-Glutamic acid-13C5 hydrate salt
  • L-谷氨酸
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
L-Glutamic Acid monosodium salt 是一种兴奋性氨基酸 (AA) 神经递质,也是所有谷氨酸受体亚型(代谢型红藻氨酸、NMDA 和 AMPA)的激动剂。它对多巴胺能神经末梢释放 DA 具有激动作用。
生物活性&实验参考方法
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Glutamate is absorbed from the gut by an active transport system specific for amino acids. This process is saturable, can be competitively inhibited, and is dependent on sodium ion concentration... . During intestinal absorption, a large proportion of glutamic acid is transaminated and consequently alanine levels in portal blood are elevated. If large amounts of glutamate are ingested, portal glutamate levels increase ... . This elevation results in increased hepatic metabolism of glutamate, leading to release of glucose, lactate, glutamine, and other amino acids, into systemic circulation ... . The pharmacokinetics of glutamate depend on whether it is free or incorporated into protein, and on the presence of other food components. Digestion of protein in the intestinal lumen and at the brush border produces a mixture of small peptides and amino acids; di-and tri-peptides may enter the absorptive cells where intracellular hydrolysis may occur, liberating further amino acids. Defects are known in both amino acid and peptide transport ... .. Glutamic acid in dietary protein, together with endogenous protein secreted into the gut, is digested to free amino acids and small peptides, both of which are absorbed into mucosal cells where peptides are hydrolyzed to free amino acids and some of the glutamate is metabolized. Excess glutamate and other amino acids appear in portal blood. As a consequence of the rapid metabolism of glutamate in intestinal mucosal cells and in the liver, systemic plasma levels are low, even after ingestion of large amounts of dietary protein. /Glutamic acid/
... Intestinal and hepatic metabolism results in elevation of levels in systemic circulation only after extremely high doses given by gavage (>30mg/kg body weight). Ingestion of monosodium glutamate (MSG) was not associated with elevated levels in maternal milk, and glutamate did not readily pass the placental barrier. Human infants metabolized glutamate similarly to adults.
Oral administration of pharmacologically high doses of glutamate results in elevated plasma levels. The peak plasma glutamate levels are both dose and concentration dependent ... . When the same dose (1 g/kg b.w.) of monosodium glutamate (MSG) was administered by gavage in aqueous solution to neonatal rats, increasing the concentration from 2% to 10% caused a five-fold increase in the plasma area under curve; similar results were observed in mice ... . Conversely, when MSG (1.5 g/kg b.w.) was administered to 43-day-old mice by gavage at varying concentrations of 2 to 20% w/v, no correlation could be established between plasma levels and concentration ...
Administration of a standard dose of 1 g/kg b.w. MSG by gavage as a 10% w/v solution resulted in a marked increase of plasma glutamate in all species studied. Peak plasma glutamate levels were lowest in adult monkeys (6 times fasting levels) and highest in mice (12-35 times fasting levels). Age-related differences between neonates and adults were observed; in mice and rats, peak plasma levels and area under curve were higher in infants than in adults while in guinea pigs the converse was observed.
For more Absorption, Distribution and Excretion (Complete) data for MONOSODIUM GLUTAMATE (7 total), please visit the HSDB record page.
Metabolism / Metabolites
Glutamic acid is metabolized in the tissues by oxidative deamination ... or by transamination with pyruvate to yield oxaloacetic acid ... which, via alpha-ketoglutarate, enters the citric acid cycle ... .. Quantitatively minor but physiologically important pathways of glutamate metabolism involve decarboxylation to gamma-aminobutyrate (GABA) and amidation to glutamine ... . Decarboxylation to GABA is dependent on pyridoxal phosphate, a coenzyme of glutamic acid decarboxylase ..., as is glutamate transaminase. Vitamin B6-deficient rats have elevated serum glutamate levels and delayed glutamate clearance ... . /Glutamic acid/
Oral dose of 1 g/kg monosodium glutamate given to rats was followed by only a small rise in plasma pyroglutamate levels. No incr of pyroglutamate or glutamate brain levels was observed under these conditions.
毒性/毒理 (Toxicokinetics/TK)
Toxicity Summary
L-Glutamic acid and its ammonium, calcium, monosodium and potassium salts were evaluated by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in 1988. The Committee noted that intestinal and hepatic metabolism results in elevation of levels in systemic circulation only after extremely high doses given by gavage (>30mg/kg body weight). Ingestion of monosodium glutamate (MSG) was not associated with elevated levels in maternal milk, and glutamate did not readily pass the placental barrier. Human infants metabolized glutamate similarly to adults. Conventional toxicity studies using dietary administration of MSG in several species did not reveal any specific toxic or carcinogenic effects nor were there any adverse outcomes in reproduction and teratology studies. Attention was paid to central nervous system lesions produced in several species after parenteral administration of MSG or as a consequence of very high doses by gavage. Comparative studies indicated that the neonatal mouse was most sensitive to neuronal injury; older animals and other species (including primates) were less so. Blood levels of glutamate associated with lesions of the hypothalamus in the neonatal mouse were not approached in humans even after bolus doses of 10 g MSG in drinking water. Because human studies failed to confirm an involvement of MSG in "Chinese Restaurant Syndrome" or other idiosyncratic intolerance, the JECFA allocated an "acceptable daily intake (ADI) not specified" to glutamic acid and its salts. No additional risk to infants was indicated. The Scientific Committee for Food (SCF) of the European Commission reached a similar evaluation in 1991. The conclusions of a subsequent review by the Federation of American Societies for Experimental Biology (FASEB) and the Federal Drug Administration (FDA) did not discount the existence of a sensitive subpopulation but otherwise concurred with the safety evaluation of JECFA and the SCF.
Interactions
Monosodium glutamate (MSG) administered intraperitoneally /for 10 days/ at a dose of 4 mg/g bw markedly increase malondialdehyde (MDA) formation in the liver, the kidney and brain of rats. Simultaneous administration of VIT C, VIT E and quercetin to MSG-treated rats significantly reduced this increase in MDA induced by MSG. VIT E reduced lipid peroxidation mostly in the liver followed by VIT C and then quercetin, while VIT C and quercetin showed a greater ability to protect the brain from membrane damage than VIT E. The decreased glutathione (GSH) level elicited by MSG in the three organs corresponded with marked increase in the activity of glutathione-S-transferase (GST). While MSG increased (p < 0.001) the activities of superoxide dismutase and catalase in the liver, it decreased significantly the activities of these enzymes in the kidney and the brain. The three antioxidants were effective at ameliorating the effects of MSG on GSH levels and the enzymes in the three organs examined. While MSG increased the activity of glucose-6-phosphatase in the liver and kidneys of rats (p < 0.001), the activity of the enzyme was abysmally low in the brain. There were marked increases in the activities of alanine aminotransferase, aspartate aminotransferase and gamma-glutamyl transferase in rats treated with MSG. The antioxidants tested protected against MSG-induced liver toxicity significantly. MSG at a dose of 4 mg/g significantly (p < 0.01) induced the formation of micronucleated polychromatic erythrocytes (MNPCEs). Co-treatment of rats with VIT C and quercetin inhibited the induction of MNPCEs by MSG (p < 0.001) ...
Non-Human Toxicity Values
LD50 Rat female oral 15800 mg/kg bw
LD50 Rat male oral 17300 mg/kg/day
LD50 Mouse male oral 17700 mg/kg bw
LD50 Mouse female oral 16400 mg/kg bw
For more Non-Human Toxicity Values (Complete) data for MONOSODIUM GLUTAMATE (24 total), please visit the HSDB record page.
参考文献

[1]. Permissive role for mglu1 metabotropic glutamate receptors in excitotoxic retinal degeneration. Neuroscience. 2017 Sep 14. pii: S0306-4522(17)30640-1.

[2]. Presynaptic effect of L-glutamic acid on the release of dopamine in rat striatal slices. Neurosci Lett. 1977 Oct;6(1):73-7.

[3]. L-Glutamic acid monosodium salt reduces the harmful effect of lithium on the development of Xenopus laevis embryos. Environ Sci Pollut Res Int. 2020 Nov;27(33):42124-42132.

[4]. Hydrochloric acid alters the effect of L-glutamic acid on cell viability in human neuroblastoma cell cultures. J Neurosci Methods. 2013 Jul 15;217(1-2):26-30.

[5]. Protective role of l-glutamic acid and l-cysteine in mitigation the chlorpyrifos-induced oxidative stress in rats. Environ Toxicol Pharmacol. 2018 Dec;64:155-163.

其他信息
Monosodium glutamate appears as white or off-white crystalline powder with a slight peptone-like odor. pH (0.2% solution)7.0. (NTP, 1992)
One of the FLAVORING AGENTS used to impart a meat-like flavor.
See also: Glutamic Acid (has active moiety) ... View More ...
Mechanism of Action
L-Glutamate and GABA supposedly act as excitatory and inhibitory transmitters, respectively, in the central nervous system. Glutamate is also involved in the synthesis of proteins. /Glutamate/
Therapeutic Uses
One of the FLAVORING AGENTS used to impart a meat-like flavor. Medically it has been used to reduce blood ammonia levels in ammoniacal azotemia, therapy of hepatic coma, in psychosis, and mental retardation.
Drug Warnings
The large doses of sodium glutamate required for the treatment of hepatic encephalopathy may result in dangerous alkalosis and hypokalemia ... important to keep close control on the electrolyte balance during therapy.
Injections of sodium glutamate should be given with caution to patients with hepatic cirrhosis, impaired renal function, or liver disease not associated with hyperammonemia.
Food and Environmental Agents: Effect on Breast-Feeding: Monosodium glutamate: None. /from Table 7/
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C5H8NNAO4
分子量
169.11
精确质量
169.035
CAS号
142-47-2
相关CAS号
L-Glutamic acid;56-86-0
PubChem CID
23672308
外观&性状
White to off-white solid powder
沸点
333.8ºC at 760 mmHg
熔点
232°C
闪点
155.7ºC
蒸汽压
2.55E-05mmHg at 25°C
折射率
25 ° (C=10, 2mol/L HCl)
tPSA
103.45
氢键供体(HBD)数目
2
氢键受体(HBA)数目
5
可旋转键数目(RBC)
4
重原子数目
11
分子复杂度/Complexity
149
定义原子立体中心数目
1
SMILES
C(CC(=O)O)[C@@H](C(=O)[O-])N.[Na+]
InChi Key
LPUQAYUQRXPFSQ-DFWYDOINSA-M
InChi Code
InChI=1S/C5H9NO4.Na/c6-3(5(9)10)1-2-4(7)8;/h3H,1-2,6H2,(H,7,8)(H,9,10);/q;+1/p-1/t3-;/m0./s1
化学名
sodium;(2S)-2-amino-5-hydroxy-5-oxopentanoate
别名
MSG; Sodium glutamate; Monosodium glutamate
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
H2O : ~7.14 mg/mL (~42.22 mM)
DMSO :< 1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: 100 mg/mL (591.33 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 5.9133 mL 29.5666 mL 59.1331 mL
5 mM 1.1827 mL 5.9133 mL 11.8266 mL
10 mM 0.5913 mL 2.9567 mL 5.9133 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

联系我们