规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 mM * 1 mL in DMSO |
|
||
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
靶点 |
BRD4 (1/2) (IC50= 77/33 nM)
|
||
---|---|---|---|
体外研究 (In Vitro) |
(+)-JQ-1 是 Bromodomain BET 家族的一种强效、高选择性和 Kac 竞争性抑制剂。 (+)-JQ-1(100 nM,48 小时)可促进鳞状细胞发育,细胞纺锤体形成、变平和角蛋白表达增强即可证明这一点。通过定量免疫组织化学评估,与 (-)-JQ1 (250 nM) 和载体对照相比,(+)-JQ-1 (250 nM) 刺激处理的 NMC 797 细胞中角蛋白的快速表达。 (+)-JQ-1(相对于 (-)-JQ1 (250 nM))在处理的 NMC 797 细胞中引起时间依赖性强 (3+) 角蛋白染色 [1]。添加 (+)-JQ-1 后几乎立即观察到自噬基因的去抑制[2]。 (+)-JQ-1 是 BET 家族共激活蛋白 BRD4 的强效噻吩二氮卓抑制剂 (Kd=90 nM),该蛋白通过 MYC 癌基因的转录调节参与癌症的发展。 (+)-JQ-1 的剂量范围实验表明可有效抑制 H4Kac4 结合,小鼠 BRDT (1) 的 IC50 值为 10 nM,人 BRDT (1) 的 IC50 值为 11 nM [3]。
|
||
体内研究 (In Vivo) |
将与已形成肿瘤相匹配的小鼠队列随机每天接受载体或 (+)-JQ1 (50 mg/kg) 腹膜内注射。 FDG-PET 成像用于在治疗后四天和随机分组之前评估小鼠。当施用 (+)-JQ1 时,FDG 摄取显着减少。肿瘤体积的评估表明,JQ1 治疗抑制了肿瘤生长。 CD1 小鼠用于口服和静脉给药后 (+)-JQ1 的药代动力学研究。静脉注射(5 mg/kg)后(+)-JQ1 平均血浆浓度的时间曲线。静脉注射(+)-JQ1的半衰期(T1/2)约为1小时,其药代动力学特征显示出良好的药物暴露(AUC=2090 hr*ng/mL)。口服剂量(10 mg/kg)后,创建了 (+)-JQ1 的平均血浆浓度-时间曲线。口服(+)-JQ1药代动力学参数显示出良好的药物暴露(AUC=2090 hr*ng/mL)、血浆峰浓度(Cmax=1180 ng/mL)和口服生物利用度(F=49%)[1]。
|
||
酶活实验 |
乙酰组蛋白结合测定。[1]
如前所述51进行分析,对制造商的方案(PerkinElmer,USA)稍作修改。将所有试剂在补充有0.05%CHAPS的50mM HEPES、100mM NaCl、0.1%BSA、pH 7.4中稀释,并在加入平板之前使其平衡至室温。在150–0μM的范围内制备配体的24点1:2系列稀释液,并将4μl转移到低体积384孔板中,然后加入4μl His标记蛋白(BRD4(1),250 nM,BRD4(2)和CREBBP,2000 nM)。将板密封并在室温下孵育30分钟,然后将4μl等摩尔浓度的生物素化肽添加到蛋白质中[BRD4(1)和BRD4(2)的肽:H4K5acK8acK12acK16ac,HSGRGK(Ac)GGK(Ac。在弱光条件下加入4μl链霉亲和素包被的供体珠(25μg/ml)和4μl镍螯合受体珠(25µg/ml)之前,将板密封并再孵育30分钟。将板箔密封以避光,在室温下孵育60分钟,并使用AlphaScreen 680激发/570发射滤光片组在PHERAstar FS板读取器上读取。对照相应的DMSO对照标准化后,在Prism 5(GraphPad Software,USA)中计算IC50值,并作为20μl反应体积中化合物的最终浓度给出。 |
||
细胞实验 |
细胞增殖测定。[1]
将细胞接种到白色384孔微量滴定板(Nunc)中,在总体积为50μl的培养基中,每孔500个细胞。797、TT和TE10细胞生长在含有1%青霉素/链霉素和10%FBS的DMEM中。Per403细胞生长在含1%青霉素/链霉菌和20%FBS的DMEM中。患者来源的NMC 11060细胞生长在具有10%FBS和1%青霉素/链球菌素的RPMI中。通过机器人销钉转移(PerkinElmer JANUS配备有V&P Scientific 100 nl销钉工具)将化合物递送至微量滴定分析板。在37ºC下孵育48小时后,裂解细胞,并使用商业增殖测定法评估孔的总ATP含量。根据剂量分析重复测量,并通过逻辑回归计算IC50的估计值。[1] 细胞生长测定。[1] 将细胞以每孔1.5×104个细胞的浓度接种在6孔组织培养皿中。细胞在2ml DMEM(797)或RPMI(11060)中生长,所述DMEM或RPMI含有10%胎牛血清、1%青霉素/链霉素和250nM(+)-JQ1或等效体积的DMSO(0.025%)。每天更换每口井中一半的介质。在第0天、第1天、第3天、第7天和第10天,将分配给每个时间点的细胞培养皿进行胰蛋白酶消化,以1:1的比例与0.4%台盼蓝混合,并使用Countess自动细胞计数器计数。 |
||
动物实验 |
|
||
药代性质 (ADME/PK) |
The bromodomain inhibitor (+)-JQ1 is a highly validated chemical probe; however, it exhibits poor in vivo pharmacokinetics.
The large differences between individual mice in this small study may lead to questions about the significance of the modest average differences obtained from this pharmacokinetic analysis. Given that our main goal was to assess the relative effects of deuteration on clearance of (+)-JQ1 rather than determining the absolute pharmacokinetic parameters of (+)-JQ1 and (+)-JQ1-D, we examined the isotopomeric ratios for (+)-JQ1 and for its major metabolite M19 from the pharmacokinetic time course for evidence of the effects of deuteration. In both male and female mice, the (+)-JQ1/(+)-JQ1-D ratio drops steadily over the examined time course (Figure 7), indicating that (+)-JQ1 is cleared more rapidly than (+)-JQ1-D.[https://pmc.ncbi.nlm.nih.gov/articles/PMC10788937/] A plasma pharmacokinetic study of JQ1 was performed in non-tumor bearing mice dosed with 30 mg/kg JQ1 intraperitoneally. All JQ1 concentrations collected after 6 h post-dose fell under the LOQ. JQ1 total plasma concentration-time data were well captured with a linear one-compartment model, in which the intraperitoneal absorption was assumed immediate and total (Figure 6). The model parameter estimates are reported in Table 7. The limited sampling model determined the following informative time-points for plasma sampling during the cerebral microdialysis study: 15 min, 1 h, and 6 h post-dose. [https://pmc.ncbi.nlm.nih.gov/articles/PMC8384680/] |
||
参考文献 | |||
其他信息 |
JQ1 is a member of the class of thienotriazolodiazepines that is the tert-butyl ester of [(6S)-4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl]acetic acid. An inhibitor of bromodomain-containing protein 4 that exhibits anti-cancer and cardioprotective properties. It has a role as a bromodomain-containing protein 4 inhibitor, a cardioprotective agent, an antineoplastic agent, an anti-inflammatory agent, an angiogenesis inhibitor, an apoptosis inducer and a ferroptosis inducer. It is a thienotriazolodiazepine, an organochlorine compound, a carboxylic ester and a tert-butyl ester.
Epigenetic proteins are intently pursued targets in ligand discovery. So far, successful efforts have been limited to chromatin modifying enzymes, or so-called epigenetic 'writers' and 'erasers'. Potent inhibitors of histone binding modules have not yet been described. Here we report a cell-permeable small molecule (JQ1) that binds competitively to acetyl-lysine recognition motifs, or bromodomains. High potency and specificity towards a subset of human bromodomains is explained by co-crystal structures with bromodomain and extra-terminal (BET) family member BRD4, revealing excellent shape complementarity with the acetyl-lysine binding cavity. Recurrent translocation of BRD4 is observed in a genetically-defined, incurable subtype of human squamous carcinoma. Competitive binding by JQ1 displaces the BRD4 fusion oncoprotein from chromatin, prompting squamous differentiation and specific antiproliferative effects in BRD4-dependent cell lines and patient-derived xenograft models. These data establish proof-of-concept for targeting protein-protein interactions of epigenetic 'readers', and provide a versatile chemical scaffold for the development of chemical probes more broadly throughout the bromodomain family.[1] Autophagy is a membrane-trafficking process that directs degradation of cytoplasmic material in lysosomes. The process promotes cellular fidelity, and while the core machinery of autophagy is known, the mechanisms that promote and sustain autophagy are less well defined. Here we report that the epigenetic reader BRD4 and the methyltransferase G9a repress a TFEB/TFE3/MITF-independent transcriptional program that promotes autophagy and lysosome biogenesis. We show that BRD4 knockdown induces autophagy in vitro and in vivo in response to some, but not all, situations. In the case of starvation, a signaling cascade involving AMPK and histone deacetylase SIRT1 displaces chromatin-bound BRD4, instigating autophagy gene activation and cell survival. Importantly, this program is directed independently and also reciprocally to the growth-promoting properties of BRD4 and is potently repressed by BRD4-NUT, a driver of NUT midline carcinoma. These findings therefore identify a distinct and selective mechanism of autophagy regulation.[2] A pharmacologic approach to male contraception remains a longstanding challenge in medicine. Toward this objective, we explored the spermatogenic effects of a selective small-molecule inhibitor (JQ1) of the bromodomain and extraterminal (BET) subfamily of epigenetic reader proteins. Here, we report potent inhibition of the testis-specific member BRDT, which is essential for chromatin remodeling during spermatogenesis. Biochemical and crystallographic studies confirm that occupancy of the BRDT acetyl-lysine binding pocket by JQ1 prevents recognition of acetylated histone H4. Treatment of mice with JQ1 reduced seminiferous tubule area, testis size, and spermatozoa number and motility without affecting hormone levels. Although JQ1-treated males mate normally, inhibitory effects of JQ1 evident at the spermatocyte and round spermatid stages cause a complete and reversible contraceptive effect. These data establish a new contraceptive that can cross the blood:testis boundary and inhibit bromodomain activity during spermatogenesis, providing a lead compound targeting the male germ cell for contraception.[3] |
分子式 |
C23H25CLN4O2S
|
|
---|---|---|
分子量 |
456.99
|
|
精确质量 |
456.138
|
|
元素分析 |
C, 60.45; H, 5.51; Cl, 7.76; N, 12.26; O, 7.00; S, 7.02
|
|
CAS号 |
1268524-70-4
|
|
相关CAS号 |
(R)-(-)-JQ1 Enantiomer;1268524-71-5;JQ-1 (carboxylic acid);202592-23-2
|
|
PubChem CID |
46907787
|
|
外观&性状 |
White to yellow solid
|
|
密度 |
1.3±0.1 g/cm3
|
|
沸点 |
610.4±65.0 °C at 760 mmHg
|
|
闪点 |
322.9±34.3 °C
|
|
蒸汽压 |
0.0±1.7 mmHg at 25°C
|
|
折射率 |
1.657
|
|
LogP |
4.49
|
|
tPSA |
97.61
|
|
氢键供体(HBD)数目 |
0
|
|
氢键受体(HBA)数目 |
6
|
|
可旋转键数目(RBC) |
5
|
|
重原子数目 |
31
|
|
分子复杂度/Complexity |
706
|
|
定义原子立体中心数目 |
1
|
|
SMILES |
ClC1C([H])=C([H])C(=C([H])C=1[H])C1C2C(C([H])([H])[H])=C(C([H])([H])[H])SC=2N2C(C([H])([H])[H])=NN=C2[C@]([H])(C([H])([H])C(=O)OC(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H])N=1
|
|
InChi Key |
DNVXATUJJDPFDM-KRWDZBQOSA-N
|
|
InChi Code |
InChI=1S/C23H25ClN4O2S/c1-12-13(2)31-22-19(12)20(15-7-9-16(24)10-8-15)25-17(11-18(29)30-23(4,5)6)21-27-26-14(3)28(21)22/h7-10,17H,11H2,1-6H3/t17-/m0/s1
|
|
化学名 |
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (5.47 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (5.47 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (5.47 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: 2% DMSO+30% PEG 300+5% Tween 80+ddH2O:5mg/mL 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.1882 mL | 10.9412 mL | 21.8823 mL | |
5 mM | 0.4376 mL | 2.1882 mL | 4.3765 mL | |
10 mM | 0.2188 mL | 1.0941 mL | 2.1882 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
Leukemia and lymphoma cell lines are broadly sensitive to BET-bromodomain inhibition.Proc Natl Acad Sci U S A.2011 Oct 4;108(40):16669-74. td> |
Gene expression profiling of LP-1 and Raji cells treated with active or inactive BET inhibitors.Proc Natl Acad Sci U S A.2011 Oct 4;108(40):16669-74. td> |
Small molecule BET-bromodomain inhibition suppressesMYCtranscription.Proc Natl Acad Sci U S A.2011 Oct 4;108(40):16669-74. td> |
MYC reconstitution significantly protects cells from BET-mediated effects.Proc Natl Acad Sci U S A.2011 Oct 4;108(40):16669-74. td> |
BET-bromodomain inhibition decreases tumor load in vivo.Proc Natl Acad Sci U S A.2011 Oct 4;108(40):16669-74. td> |
Integrated genomic rationale for BET bromodomains as therapeutic targets in MM.Cell.2011 Sep 16;146(6):904-17. td> |
Inhibition of Myc-dependent transcription by theJQ1BET bromodomain inhibitor.Cell.2011 Sep 16;146(6):904-17. td> |
BET inhibition suppressesMYCtranscription in MM.Cell.2011 Sep 16;146(6):904-17. td> |
Regulation ofMYCtranscription by BET bromodomains.Cell.2011 Sep 16;146(6):904-17. td> |
Anti-myeloma activity ofJQ1in vitro.Cell.2011 Sep 16;146(6):904-17. td> |
JQ1induces cell cycle arrest and cellular senescence in MM cells.Cell.2011 Sep 16;146(6):904-17. td> |
Translational implications of BET bromodomain inhibition in MM.Cell.2011 Sep 16;146(6):904-17. td> |
![]() |
![]() |