规格 | 价格 | 库存 | 数量 |
---|---|---|---|
500mg |
|
||
Other Sizes |
|
体外研究 (In Vitro) |
糖精(0.5、2.5 和 5 mM)以物种耦合方式从外部抑制细胞生长 [1]。
|
---|---|
体内研究 (In Vivo) |
糖精(呼吸;5 mg/kg;每天两次)被发现可以减轻咳嗽负担并改变体内病变组的组成[1]。然而,振动屏障与 C57BL/6JRj 野生型 (wt) 的相互作用没有显着变化。
|
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
TRANSPLACENTAL TRANSFER OF ... (14)C-SACCHARIN ADMIN BY IV INFUSION TO RHESUS MONKEYS IN LATE PREGNANCY, WAS RAPID, BUT SLIGHT. (14)C WAS CLEARED MORE SLOWLY FROM FETAL THAN FROM MATERNAL BLOOD, & WAS DISTRIBUTED IN ALL FETAL TISSUES EXAMINED ... WAS ONLY BIOTRANSFORMED TO LIMITED EXTENT & WAS RAPIDLY EXCRETED ... . Three groups of five men were given sodium saccharin in single oral doses of 50, 150 or 333 mg/60 kg bw. Peak plasma concentrations occurred between 30 and 60 min after dosing, and 60 and 76% was excreted unchanged in urine at 6 and 24 h, respectively. /Sodium saccharin/ IN 3 VOLUNTEERS, 85-92% OF DOSES OF 1 G 3(14)C-SACCHARIN ADMIN ORALLY FOR 21 DAYS WAS EXCRETED UNCHANGED IN THE URINE WITHIN 24 HR; NO METABOLITES WERE FOUND. WITHIN 48 HR, 92.3% OF A DOSE OF 500 MG (14)C-SACCHARIN WAS EXCRETED IN THE URINE & 5.8% IN THE FECES. After administration of 1-g doses of soluble (sodium) saccharin [form not specified] to three men, saccharin was excreted in the urine quantitatively unchanged by two of the subjects within 48 hr. In a subsequent experiment involving six subjects, none excreted the dose quantitatively within 72 hr, but no metabolism of saccharin was detected. /Sodium saccharin/ For more Absorption, Distribution and Excretion (Complete) data for SACCHARIN (13 total), please visit the HSDB record page. Metabolism / Metabolites ... 3-(14)C-SACCHARIN WAS EXCRETED UNCHANGED, MAINLY IN THE URINE (85-92% IN 24 HR) BY ADULT HUMAN SUBJECTS, BOTH BEFORE & AFTER TAKING 1 G OF SACCHARIN DAILY FOR 21 DAYS; NO METABOLITE OF SACCHARIN WAS FOUND. THESE RESULTS WERE AMPLY CONFIRMED IN ANIMAL EXPERIMENTS, IN WHICH ORALLY ADMIN (14)C-SACCHARIN WAS EXCRETED ENTIRELY UNCHANGED BY RATS ON A NORMAL DIET & BY RATS ON A DIET CONTAINING 1% & 5% OF SACCHARIN FOR UP TO 12 MO. 80-90% OF THE DOSE WAS EXCRETED IN THE URINE, 10-20% IN THE FECES; NO (14)CO2 WAS FOUND IN THE EXHALED AIR, & NO (14)CO3(2-) OR 2-SULFAMOYLBENZOIC ACID IN THE URINE. YIELDS IN MONKEYS SULFAMOYLBENZOIC ACID & O-SULFOBENZOIC ACID. /FROM TABLE/ EXPOSURE OF MALE CHARLES RIVER CDI RATS TO 5% SACCHARIN DIET IN UTERO & THROUGHOUT WEANING, DID NOT INDUCE DETECTABLE METABOLISM. NO METABOLITES WERE DETECTED IN URINE OF NORMAL RATS GIVEN TRACER DOSE. PRETREATMENT WITH 3-METHYLCHOLANTHRENE DID NOT INDUCE SACCHARIN METABOLISM. One female and two male volunteers excreted 85-92% of a dose of 1g (3-14)C- saccharin unchanged in the urine within 24 hr, before or after taking 1 g saccharin daily for 21 days; no metabolites were found. Within 48 h, 92% of a dose of 500 mg [14C]saccharin taken by six male volunteers was excreted in the urine and 5.8% in the faeces. Analysis of urine and feces by highperformance liquid chromatography and thin-layer chromatography revealed only unmetabolized saccharin. Biological Half-Life In three adult men given an intravenous bolus of 10 mg/kg bw sodium saccharin, the plasma concentration-time curve fitted a two-compartment open model with a terminal half-life of 70 min. /Sodium saccharin/ Six women with an average oral daily intake of 100-300 mg saccharin (form not specified) had maximum plasma concentrations after 0.5-1 hr and an elimination half-life of 7.5 hr. |
毒性/毒理 (Toxicokinetics/TK) |
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation Because of the low levels of saccharin in breastmilk, amounts ingested by the infant after typical maternal intake are small and would not be expected to cause any adverse effects in breastfed infants and not likely to reach an intake greater than the acceptable daily intake. Ingestion of diet drinks containing low-calorie sweeteners might increase the risk of vomiting in breastfed infants. However, some authors suggest that women may wish to limit the consumption of nonnutritive sweeteners while breastfeeding because their effect on the nursing infants are unknown. ◉ Effects in Breastfed Infants A cross-sectional survey assessed the dietary history of US mothers nursing infants between 11 and 15 weeks of age. The survey was used to estimate the amount of diet soda and fruit drinks consumed by the women. There were no statistically significant differences in infants’ weight or z-scores based on low calorie sweetener exposure. However, infants exposed to low calorie sweetener in milk once or less per week had a statistically significantly higher risk of vomiting than those who were not exposed. Greater exposure was not associated with vomiting. It was not possible to assess the effects of specific sweeteners. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Interactions IT IS NOW WELL ESTABLISHED THAT THE INTERACTION OF MULTIPLE ENVIRONMENTAL FACTORS MAY INCR THE INCIDENCE OF SOME HUMAN CANCERS MORE THAN EXPOSURE TO A SINGLE CARCINOGEN. WITH AN IN VIVO EXPERIMENTAL RAT MODEL, SYNERGISTIC EFFECT IN BLADDER CARCINOGENESIS BETWEEN A SUBCARCINOGENIC DOSE OF THE STRONG BLADDER CARCINOGEN, N-METHYL-N-NITROSOUREA & SACCHARIN WAS DEMONSTRATED. Since both sodium L-ascorbate and sodium saccharin promote two-stage bladder carcinogenesis in rats, synergism of the two chemicals was investigated with special reference to the role of urinary pH and sodium+ concentration. Male F344 rats were given 0.05% N-butyl-N-(4-hydroxybutyl)nitrosamine in the drinking water for 4 wk and then treated with basal diet containing 5% sodium saccharin, 5% sodium L-ascorbate, 5% sodium saccharin plus 5% sodium L-ascorbate, 5% L-ascorbic acid, 5% sodium saccharin plus 5% L-ascorbic acid, or no added chemical for 32 wk. Treatment with sodium saccharin or sodium L-ascorbate alone significantly increased the induction of neoplastic and preneoplastic lesions of the bladder. Sodium saccharin plus sodium L-ascorbate also induced these bladder lesions significantly when compared with the controls, and the number of lesions was greater than the sum of the lesions in the group treated with sodium saccharin alone or sodium L-ascorbate alone. In contrast, the induction of carcinomas and papillomas in rats treated with sodium saccharin plus sodium L-ascorbate produced an elevation of urinary pH and sodium+ concentrations, although the increases were not different from those in rats fed sodium saccharin or sodium L-ascorbate alone. Sodium saccharin plus L-ascorbic acid, however, did not cause elevation of urinary pH, although it increased urinary sodium+ concentration. Thus, the bladder carcinogenesis promotion by sodium saccharin was synergized by sodium L-ascorbate and inhibited by L-ascorbic acid. This modulation was associated with changes of urinary pH and Na+ concentration. /Sodium saccharin/ CHRONIC RAT FEEDING STUDIES WERE CONDUCTED ON A 10:1 CYCLAMATE/SACCHARIN MIXT. THE TEST MIXT WAS FED AT DIETARY LEVELS DESIGNED TO FURNISH 500, 1120, & 2500 MG/KG TO GROUPS OF 35 MALE & 45 FEMALE RATS. THE ONLY POS FINDING WHICH PROVED TO HAVE CRUCIAL SIGNIFICANCE WAS THE OCCURRENCE OF PAPILLARY CARCINOMAS IN THE BLADDERS OF 12 OF THE 70 RATS FED THE MAX DIETARY LEVEL OF THE MIXT (EQUIV TO ABOUT 2500 MG/KG) FOR PERIODS RANGING FROM 78 TO 105 WK. N-METHYL-N-NITROSOUREA WAS USED AS INITIATING CARCINOGEN AND GREATLY INCR YIELD OF BLADDER CANCERS IN SACCHARIN TREATED RATS. SACCHARIN IS A WEAK INITIATOR BUT A POWERFUL PROMOTER OF CARCINOGENESIS IN THE RAT BLADDER. For more Interactions (Complete) data for SACCHARIN (15 total), please visit the HSDB record page. Non-Human Toxicity Values LD50 Rat ip 7100 mg/kg /Sodium saccharin/ LD50 Rat oral 14,200 mg/kg /Sodium saccharin/ LD50 Mouse oral 17,500 mg/kg /Sodium saccharin/ |
参考文献 |
[1]. Sünderhauf A, et al. Saccharin Supplementation Inhibits Bacterial Growth and Reduces Experimental Colitis in Mice. Nutrients. 2020 Apr 17;12(4). pii: E1122.
|
其他信息 |
Saccharin (manufacturing) appears as white crystals. Odorless or faintly aromatic odor. Sweet taste. (NTP, 1992)
Saccharin, sodium salt appears as odorless white crystals or crystalline powder. Aqueous solution is neutral or alkaline to litmus, but not alkaline to phenolphthalein. Effloresces in dry air. Intensely sweet taste. (NTP, 1992) Saccharin is a 1,2-benzisothiazole having a keto-group at the 3-position and two oxo substituents at the 1-position. It is used as an artificial sweetening agent. It has a role as a sweetening agent, a xenobiotic and an environmental contaminant. It is a 1,2-benzisothiazole and a N-sulfonylcarboxamide. Saccharin has been investigated for the treatment of Hypertension and Hyperglycemia. Flavoring agent and non-nutritive sweetener. See also: Aspartame; saccharin; sodium cyclamate; sucralose (component of) ... View More ... Mechanism of Action ...it has been shown that the activation of particular T2R bitter taste receptors is partially involved with the bitter aftertaste sensation of saccharin and acesulfame-K. ... /This study/ addressed the question of whether /they/ could stimulate transient receptor potential vanilloid-1 (TRPV1) receptors, as these receptors are activated by a large range of structurally different chemicals. Moreover, TRPV1 receptors and/or their variants are found in taste receptor cells and in nerve terminals throughout the oral cavity. Hence, TRPV1 activation could be involved in the ... aftertaste or even contribute to the poorly understood metallic taste sensation. Using Ca(2+) imaging on TRPV1 receptors heterologously expressed in the human embryonic kidney (HEK) 293 cells and on dissociated primary sensory neurons,... /it was found/ that in both systems, .../sweeteners/ activate TRPV1 receptors, and, moreover, they sensitize these channels to acid and heat. ... /it was/also found that TRPV1 receptors were activated by CuSO(4), ZnSO(4), and FeSO(4), three salts known to produce a metallic taste sensation. In summary, .../the/ results identify a novel group of compounds that activate TRPV1 and, consequently, provide a molecular mechanism that may account for off tastes of sweeteners and metallic tasting salts. |
分子式 |
C7H5NO3S
|
---|---|
分子量 |
183.1845
|
精确质量 |
182.999
|
CAS号 |
81-07-2
|
相关CAS号 |
Saccharin sodium hydrate;82385-42-0;Saccharin-d4;1189466-17-8;Saccharin sodium;128-44-9
|
PubChem CID |
5143
|
外观&性状 |
Monoclinic crystals
Needles from acetone; prisms from alcohol; leaflets from water White, crystalline powder White crystals |
密度 |
1.7±0.1 g/cm3
|
沸点 |
438.9±28.0 °C at 760 mmHg
|
熔点 |
226-229 °C(lit.)
|
闪点 |
219.3±24.0 °C
|
蒸汽压 |
0.0±1.1 mmHg at 25°C
|
折射率 |
1.714
|
LogP |
0.46
|
tPSA |
71.62
|
氢键供体(HBD)数目 |
1
|
氢键受体(HBA)数目 |
3
|
可旋转键数目(RBC) |
0
|
重原子数目 |
12
|
分子复杂度/Complexity |
303
|
定义原子立体中心数目 |
0
|
SMILES |
O=C1C2C(=CC=CC=2)S(=O)(=O)N1
|
InChi Key |
CVHZOJJKTDOEJC-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C7H5NO3S/c9-7-5-3-1-2-4-6(5)12(10,11)8-7/h1-4H,(H,8,9)
|
化学名 |
1,1-dioxo-1,2-benzothiazol-3-one
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO : ~100 mg/mL (~545.91 mM)
H2O : ~2.63 mg/mL (~14.36 mM) |
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (13.65 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (13.65 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (13.65 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 5.4591 mL | 27.2956 mL | 54.5911 mL | |
5 mM | 1.0918 mL | 5.4591 mL | 10.9182 mL | |
10 mM | 0.5459 mL | 2.7296 mL | 5.4591 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。