规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10mg |
|
||
50mg |
|
||
100mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
靶点 |
Endogenous Metabolite; Microbial Metabolite
|
---|---|
体外研究 (In Vitro) |
在影响番茄、黄瓜、水稻等作物的盐胁迫、干旱胁迫、高温胁迫、盐碱胁迫等非生物条件下,盐酸亚精胺至关重要[1]。
|
体内研究 (In Vivo) |
高羊茅(Festuca arundinacea Schreb)是一种典型的冷季草,广泛用于草坪和牧场。然而,高温作为一种非生物胁迫严重影响了其利用。本研究旨在探讨亚精胺(Spd)对高羊茅热应激反应的影响。在22℃(常温)和44℃(热胁迫)条件下处理4 h。结果表明,外源Spd在常温条件下部分改善了高羊茅叶片的质量。然而,经过热胁迫处理后,外源Spd显著降低了高羊茅叶片的电解质泄漏。Spd还能显著降低H2O2和O2⋅-含量,提高抗氧化酶活性。此外,PAs还能调节SOD、POD、APX等抗氧化酶的活性,有助于清除ROS。此外,施用Spd还能显著提高叶绿素含量,并对高温下叶绿素α荧光瞬态有积极影响。通过jip测试发现,Spd试剂增强了光系统II (PSII)的性能。在热应力作用下,Spd显著提高了能量分岔阶段的部分势(PIABS和PItotal)、量子产率和效率(φP0、δR0、φR0和γRC)。外源Spd还能降低QA-还原PSII反应中心(RC)的比能通量(TP0/RC和ET0/RC)。此外,外源Spd提高了编码PSII核心反应中心复合物蛋白的psbA和psbB的表达水平。我们推断PAs可以稳定核酸的结构,保护RNA免受核糖核酸酶的降解。总之,我们的研究表明,外源Spd通过维持细胞膜稳定性、增加抗氧化酶活性、改善PSII及相关基因表达等途径增强高羊茅的耐热性[1]。
|
酶活实验 |
粗酶萃取[1]
酶提物取0.2 g叶粉,用液氮浸泡在4℃预冷的4ml磷酸盐缓冲液(150 mM, pH 7.0)中,用0.2 M Na2HPO4和0.2 M NaH2PO4均质。然后,匀浆在4℃下15000 × g离心30 min,最后收集上清,4℃保存,测定酶活性[1]。 抗氧化酶活性[1] 在2.9 mL溶液中加入50 mM磷酸缓冲液(pH 7.8)、1.125 mM硝基蓝四氮唑(NBT)、60 μM核黄素、195 mM蛋氨酸和3 μM乙二胺四乙酸(EDTA),取0.1 mL酶提取物。然后,在4000 lx光照下孵育30 min。以3ml不含酶提取物的溶液为对照,记录560nm处吸光度的变化。一个单位的SOD活性被定义为抑制NBT降低50%。[1] 根据Fan et al.(2014)描述的方法测量POD活性。简单地说,将50 μL酶提取物加入2.95 mL含有0.075% H2O2, 0.1 M醋酸钠-乙酸缓冲液(pH 5.0), 0.25 mL愈创木酚(溶于50%乙醇溶液)的溶液中。然后我们记录在460 nm / min下吸光度的变化,持续3 min。单位POD活性定义为每分钟吸光度的增加。[1] APX活性测定采用Plant APX Elisa Kit。[1] |
细胞实验 |
最佳Spd浓度评价[1]
为了确定适当的亚精胺(Spd)浓度对缓解热应激的有效作用,我们进行了不同浓度Spd的初步实验。根据水稻上的Mostofa实验(Mostofa et al., 2014)初步选择Spd浓度(0、0.5、1、2 mM)。随后,我们通过比较热应激4 h后的荧光瞬态,选择最佳浓度(0.5 mM)(图11)。图11显示了热胁迫下不同浓度Spd处理后叶绿素荧光瞬态的差异变化。0.5 mM Spd通过提高FJ、FI和FP对光合作用有积极影响。 |
药代性质 (ADME/PK) |
Metabolism / Metabolites
Uremic toxins tend to accumulate in the blood either through dietary excess or through poor filtration by the kidneys. Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces. |
毒性/毒理 (Toxicokinetics/TK) |
Toxicity Summary
Uremic toxins such as spermidine are actively transported into the kidneys via organic ion transporters (especially OAT3). Increased levels of uremic toxins can stimulate the production of reactive oxygen species. This seems to be mediated by the direct binding or inhibition by uremic toxins of the enzyme NADPH oxidase (especially NOX4 which is abundant in the kidneys and heart) (A7868). Reactive oxygen species can induce several different DNA methyltransferases (DNMTs) which are involved in the silencing of a protein known as KLOTHO. KLOTHO has been identified as having important roles in anti-aging, mineral metabolism, and vitamin D metabolism. A number of studies have indicated that KLOTHO mRNA and protein levels are reduced during acute or chronic kidney diseases in response to high local levels of reactive oxygen species (A7869). A7868: Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. PMID:25041433 Health Effects Chronic exposure to uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Exposure Routes: Endogenous, Ingestion, Dermal (contact) Symptoms As a uremic toxin, this compound can cause uremic syndrome. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. It can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. Abnormal bleeding, such as bleeding spontaneously or profusely from a very minor injury can also occur. Heart problems, such as an irregular heartbeat, inflammation in the sac that surrounds the heart (pericarditis), and increased pressure on the heart can be seen in patients with uremic syndrome. Shortness of breath from fluid buildup in the space between the lungs and the chest wall (pleural effusion) can also be present. Treatment Kidney dialysis is usually needed to relieve the symptoms of uremic syndrome until normal kidney function can be restored. |
参考文献 | |
其他信息 |
See also: Spermidine (annotation moved to).
|
分子式 |
C7H22CL3N3
|
---|---|
分子量 |
254.6287
|
精确质量 |
253.087
|
元素分析 |
C, 33.02; H, 8.71; Cl, 41.77; N, 16.50
|
CAS号 |
334-50-9
|
相关CAS号 |
334-50-9 (3HCl); 124-20-9
|
PubChem CID |
9539
|
外观&性状 |
Typically exists as White to off-white solid at room temperature
|
密度 |
0.906 g/cm3
|
沸点 |
246.6ºC at 760 mmHg
|
熔点 |
257-259 °C(lit.)
|
闪点 |
118.1ºC
|
LogP |
3.861
|
tPSA |
64.07
|
氢键供体(HBD)数目 |
6
|
氢键受体(HBA)数目 |
3
|
可旋转键数目(RBC) |
7
|
重原子数目 |
13
|
分子复杂度/Complexity |
56.8
|
定义原子立体中心数目 |
0
|
SMILES |
Cl[H].Cl[H].Cl[H].N([H])(C([H])([H])C([H])([H])C([H])([H])N([H])[H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])N([H])[H]
|
InChi Key |
LCNBIHVSOPXFMR-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C7H19N3.3ClH/c8-4-1-2-6-10-7-3-5-9;;;/h10H,1-9H2;3*1H
|
化学名 |
N'-(3-aminopropyl)butane-1,4-diamine;trihydrochloride
|
别名 |
Spermidine trihydrochloride; 334-50-9; Spermidine hydrochloride; N1-(3-Aminopropyl)butane-1,4-diamine trihydrochloride; N-(3-Aminopropyl)-1,4-butanediamine trihydrochloride; Spermidine HCl; Spermidine (trihydrochloride); MFCD00012918;
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
H2O : ~250 mg/mL (~981.82 mM)
|
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: 100 mg/mL (392.73 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶。
请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 3.9273 mL | 19.6363 mL | 39.2727 mL | |
5 mM | 0.7855 mL | 3.9273 mL | 7.8545 mL | |
10 mM | 0.3927 mL | 1.9636 mL | 3.9273 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。