| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 50mg |
|
||
| 100mg |
|
||
| 250mg |
|
||
| 500mg |
|
||
| 1g |
|
||
| 2g |
|
||
| Other Sizes |
| 靶点 |
Triclabendazole (CGA89317) targets parasitic tubulin (for anti-parasitic activity) and modulates the caspase-3/GSDME pathway (for inducing pyroptosis in cancer cells)[1][2][3]
|
|---|---|
| 体外研究 (In Vitro) |
MCF-7 和 MDA-MB-231 细胞对三氯苯达唑(20-320 μM,24-48 小时)均具有细胞毒性 [1]。当暴露于三氯苯达唑(40–160 μM,24 小时)时,MCF-7 和 MDA-MB-231 细胞会发生细胞凋亡 [1]。曲美唑(0.97-500 μM,48-72 小时)对巨噬细胞的细胞毒性很小[3]。三氯苯达唑(45.67 μM,72 小时)显着改变原鞭毛细胞的细胞周期阶段[3]。
在人类乳腺癌细胞系(MDA-MB-231、MCF-7)中,Triclabendazole 抑制细胞增殖,72 小时处理后的 IC50 值分别为:MDA-MB-231(12.5 μM)、MCF-7(15.3 μM)[1] - Triclabendazole(10-20 μM)诱导 MDA-MB-231 细胞焦亡,15 μM 浓度处理 48 小时后,58% 的细胞呈现焦亡形态(细胞肿胀、膜破裂),伴随 caspase-3 激活、GSDME N 端切割,以及 IL-1β 和 LDH 释放(LDH 释放率从 10% 升至 65%)[1] - Western blot 分析显示,15 μM Triclabendazole 使 MCF-7 细胞中切割型 caspase-3 表达上调 3.2 倍、GSDME-N 表达上调 4.5 倍,而敲低 GSDME 可逆转焦亡并降低细胞活力抑制率 [1] - 在亚马逊利什曼原虫前鞭毛体中,Triclabendazole 抑制寄生虫生长,72 小时 IC50 为 8.7 μM;与两性霉素 B(IC50 = 0.2 μM)联用时表现出协同活性,协同指数(CI)为 0.45 [3] - Triclabendazole(5-20 μM)剂量依赖性降低感染巨噬细胞内亚马逊利什曼原虫无鞭毛体的活力,15 μM 浓度时抑制率达 70%,而溶媒处理组仅为 22% [3] |
| 体内研究 (In Vivo) |
在植入MDA-MB-231细胞的裸鼠中,三甲苯唑(20-100mg/kg,腹腔注射,每周两次,持续2周)具有抗肿瘤活性[1]。
在实验感染三氯苯达唑耐药肝片吸虫的小鼠中,口服 Triclabendazole(100 mg/kg,单次给药)联合酮康唑(100 mg/kg,口服,每日一次,连续 5 天)使虫体负荷减少 68%,而 Triclabendazole 单药组仅减少 25% [2] - 联合治疗组回收的虫体活力降低(80% 的虫体无活动能力,而 Triclabendazole 单药组为 30%),并出现皮层破坏、肠道上皮坏死等组织病理学损伤 [2] |
| 酶活实验 |
乳腺癌细胞抗增殖实验:MDA-MB-231/MCF-7 细胞接种于 96 孔板(3×103 个细胞 / 孔),用系列浓度的 Triclabendazole(1-50 μM)处理 72 小时。MTT 法评估细胞活力,计算 IC50 值 [1]
- 焦亡检测实验:MDA-MB-231 细胞用 Triclabendazole(10-20 μM)处理 48 小时。相差显微镜观察焦亡形态;比色法检测 LDH 释放;ELISA 检测 IL-1β 分泌;Western blot 分析切割型 caspase-3 和 GSDME 表达 [1] - 利什曼原虫前鞭毛体抑制实验:亚马逊利什曼原虫前鞭毛体在含系列浓度 Triclabendazole(1-40 μM)的培养基中培养 72 小时。MTT 法测定寄生虫活力,计算 IC50 值 [3] - 无鞭毛体抑制实验:巨噬细胞与亚马逊利什曼原虫前鞭毛体(感染复数 MOI = 10:1)共孵育后,用 Triclabendazole(5-20 μM)处理 72 小时。Giemsa 染色感染巨噬细胞,计数细胞内无鞭毛体数量以计算抑制率 [3] - 协同实验:亚马逊利什曼原虫前鞭毛体用 Triclabendazole(0.5-20 μM)与两性霉素 B(0.05-1 μM)的组合处理 72 小时。测定细胞活力,采用 Chou-Talalay 法计算协同指数 [3] |
| 细胞实验 |
细胞毒性测定[1]
细胞类型: MCF-7 和 MDA-MB-231 细胞 测试浓度: 20 μM、40 μM、80 μM ,160 μM,320 μM, 孵育时间:24 小时、48 小时 实验结果:显着降低代谢活性。 细胞凋亡分析[1] 细胞类型: MCF-7 和 MDA-MB-231 细胞 测试浓度: 40 μM, 80 μM、160 μM 孵育时间: 24 小时 实验结果: 160 μM 显着诱导细胞凋亡。上调Bax的表达,下调Bcl-2的表达。以剂量依赖性方式激活并裂解 caspase-8 和 caspase-9。 肝片吸虫感染模型:小鼠口服接种 20 个三氯苯达唑耐药肝片吸虫囊蚴。感染后 4 周,小鼠随机分组(每组 6 只),处理方案为:(1)溶媒(玉米油)口服;(2)Triclabendazole(100 mg/kg)口服(单次给药);(3)酮康唑(100 mg/kg)口服,每日一次,连续 5 天;(4)Triclabendazole(100 mg/kg,单次给药)+ 酮康唑(100 mg/kg 口服,每日一次,连续 5 天)。治疗后 2 周处死小鼠,计数肝脏内虫体并评估虫体活力 [2] - Triclabendazole 溶于玉米油制备所需浓度的口服制剂 [2] |
| 动物实验 |
10 mg/kg; i.m.
Sheep Fasciola hepatica infection model: Mice were orally infected with 20 metacercariae of triclabendazole-resistant Fasciola hepatica. Four weeks post-infection, mice were randomized (n=6/group) and treated with: (1) vehicle (corn oil) p.o., (2) Triclabendazole (100 mg/kg) p.o. (single dose), (3) ketoconazole (100 mg/kg) p.o. daily for 5 days, (4) Triclabendazole (100 mg/kg, single dose) + ketoconazole (100 mg/kg p.o. daily for 5 days). Two weeks after treatment, mice were sacrificed, and liver-dwelling worms were counted and assessed for motility [2] - Triclabendazole was dissolved in corn oil to prepare oral formulations with the required concentration [2] |
| 药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
After a single oral dose of 10 mg/kg triclabendazole with a 560-kcal meal to patients diagnosed with fascioliasis, mean peak plasma concentrations (Cmax) for triclabendazole, the sulfoxide, and sulfone metabolites were 1.16, 38.6, and 2.29 μmol/L, respectively. The area under the curve (AUC) for triclabendazole, the sulfoxide and sulfone metabolites were 5.72, 386, and 30.5 μmol∙h/L, respectively. After the oral administration of a single dose of triclabendazole at 10 mg/kg with a 560 calorie meal to patients with fascioliasis, the median Tmax for the parent compound as well as the active sulfoxide metabolite was 3 to 4 hours. Effect of Food Cmax and AUC of triclabendazole and sulfoxide metabolite increased about 2-3 times when triclabendazole was administered as a single dose at 10 mg/kg with a meal containing approximately 560 calories. Additionally, the sulfoxide metabolite Tmax increased from 2 hours in fasting subjects to 4 hours in fed subjects. No data regarding excretion is available in humans. In animals, triclabendazole is primarily excreted by the biliary tract in the feces (90%), together with the sulfoxide and sulfone metabolite. Less than 10% of an oral dose is found excreted in the urine. The apparent volume of distribution (Vd) of the sulfoxide metabolite in fed patients is about 1 L/kg. Metabolism / Metabolites Based on in vitro studies, triclabendazole is mainly metabolized by CYP1A2 enzyme (approximately 64%) into its active _sulfoxide_ metabolite and to a lesser extent by CYP2C9, CYP2C19, CYP2D6, CYP3A, and FMO (flavin containing monooxygenase). This sulfoxide metabolite is further metabolized mainly by CYP2C9 to the active sulfone metabolite, and to a smaller extent by CYP1A1, CYP1A2, CYP1B1, CYP2C19, CYP2D6, and CYP3A4, _in vitro_. Biological Half-Life The plasma elimination half-life (t1/2) of triclabendazole, the sulfoxide and sulfone metabolites in human is about 8, 14, and 11 hours, respectively. |
| 毒性/毒理 (Toxicokinetics/TK) |
Hepatotoxicity
The published and historic controlled trials of triclabendazole in chronic fascioliasis rarely described adverse event rates or blood test results except for eosinophilia. Instances of enzyme elevations and jaundice have been described, but patients with chronic fascioliasis often have minor elevations in liver tests. Furthermore, the common side effects of treatment are most likely due to the effects of sudden expulsion of the liver flukes from the biliary tree, which can result in transient serum ALT and alkaline phosphatase elevations and even jaundice. There are no reports of serious liver injury, acute liver failure, vanishing bile duct syndrome or chronic hepatitis after triclabendazole therapy. There are reports of cholestatic hepatic injury and vanishing bile duct syndrome linked to other benzimidazole anthelmintic agents such as thiabendazole and albendazole. There is also reported association between Fasciola infection with the potential for bile duct obstruction and sequelae. Likelihood score: E (unlikely cause of clinically apparent liver injury). Effects During Pregnancy and Lactation ◉ Summary of Use during Lactation No information is available on the use of triclabendazole during breastfeeding. Because of protein binding of 96% to 99% for the drug and metabolites, exposure of the breastfed infant is likely to be low. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Protein Binding Protein-binding of triclabendazole, sulfoxide metabolite and sulfone metabolite in human plasma was 96.7%, 98.4% and 98.8% respectively. |
| 参考文献 |
[1]. Yan L, et al. Triclabendazole induces pyroptosis by activating caspase-3 to cleave GSDME in breast cancer cells [J]. Frontiers in Pharmacology, 2021, 12: 670081.
[2]. Devine C, et al. Potentiation of triclabendazole action in vivo against a triclabendazole-resistant isolate of Fasciola hepatica following its co-administration with the metabolic inhibitor, ketoconazole [J]. Veterinary parasitology, 2012, 184(1): 37-47. [3]. Borges B S, et al. In vitro anti-Leishmania activity of triclabendazole and its synergic effect with amphotericin B [J]. Frontiers in Cellular and Infection Microbiology, 2023, 12: 1044665. |
| 其他信息 |
6-chloro-5-(2,3-dichlorophenoxy)-2-(methylthio)-1H-benzimidazole is an aromatic ether.
Triclabendazole, manufactured by Novartis pharmaceuticals, is an antihelminthic drug that was approved by the FDA in February 2019 for the treatment of fascioliasis in humans. Fascioliasis is a parasitic infection often caused by the helminth, Fasciola hepatica, which is also known as “the common liver fluke” or “the sheep liver fluke” or by Fasciola gigantica, another helminth. These parasites can infect humans following ingestion of larvae in contaminated water or food. Triclabendazole was previously used in the treatment of fascioliasis in livestock, but is now approved for human use. This drug is currently the only FDA-approved drug for individuals with fascioliasis, which affects 2.4 million people worldwide. Triclabendazole is an Anthelmintic. The mechanism of action of triclabendazole is as a Cytochrome P450 2C19 Inhibitor, and Cytochrome P450 1A2 Inhibitor, and Cytochrome P450 2A6 Inhibitor, and Cytochrome P450 2B6 Inhibitor, and Cytochrome P450 2C8 Inhibitor, and Cytochrome P450 2C9 Inhibitor, and Cytochrome P450 2D6 Inhibitor, and Cytochrome P450 3A Inhibitor. Triclabendazole is an oral anthelmintic used in the treatment of chronic fascioliasis. Triclabendazole therapy is generally well tolerated but can be accompanied by abdominal pain, nausea and mild liver test abnormalities, which are probably due to the expulsion of dead or dying flukes rather than hepatic injury due to the therapy. Benzimidazole antiplatyhelmintic agent that is used for the treatment of FASCIOLIASIS and PARAGONIMIASIS. Drug Indication This drug is indicated for the treatment of fascioliasis in patients aged 6 years old and above. FDA Label Mechanism of Action Triclabendazole is an anthelmintic agent against _Fasciola_ species. The mechanism of action against Fasciola species is not fully understood at this time. In vitro studies and animal studies suggest that triclabendazole and its active metabolites (_sulfoxide_ and _sulfone_) are absorbed by the outer body covering of the immature and mature worms, causing a reduction in the resting membrane potential, the inhibition of tubulin function as well as protein and enzyme synthesis necessary for survival. These metabolic disturbances lead to an inhibition of motility, disruption of the worm outer surface, in addition to the inhibition of spermatogenesis and egg/embryonic cells. A note on resistance In vitro studies, in vivo studies, as well as case reports suggest a possibility for the development of resistance to triclabendazole. The mechanism of resistance may be multifactorial and include changes in drug uptake/efflux mechanisms, target molecules, and changes in drug metabolism. The clinical significance of triclabendazole resistance in humans is not yet elucidated. Triclabendazole is a benzimidazole anthelmintic drug primarily used for the treatment of Fasciola hepatica (liver fluke) and Fasciolopsis buski infections [2] Its anti-parasitic mechanism involves binding to parasitic tubulin, inhibiting microtubule polymerization and disrupting parasite growth and reproduction [2][3] In breast cancer cells, it exerts antitumor activity by activating caspase-3 to cleave GSDME, inducing pyroptosis (a pro-inflammatory form of cell death) [1] It exhibits synergistic anti-Leishmania activity with amphotericin B in vitro, enhancing parasite killing efficacy [3] Co-administration with ketoconazole (a metabolic inhibitor) potentiates its in vivo activity against triclabendazole-resistant Fasciola hepatica, likely by increasing Triclabendazole bioavailability [2] It shows potential as a repurposed drug for breast cancer treatment and as a combination agent for drug-resistant parasitic infections [1][2][3] |
| 分子式 |
C14H9CL3N2OS
|
|
|---|---|---|
| 分子量 |
359.66
|
|
| 精确质量 |
357.95
|
|
| CAS号 |
68786-66-3
|
|
| 相关CAS号 |
Triclabendazole-d3;1353867-93-2;Triclabendazole-13C,d3
|
|
| PubChem CID |
50248
|
|
| 外观&性状 |
White to off-white solid powder
|
|
| 密度 |
1.6±0.1 g/cm3
|
|
| 沸点 |
495.9±55.0 °C at 760 mmHg
|
|
| 熔点 |
175-176°C
|
|
| 闪点 |
253.7±31.5 °C
|
|
| 蒸汽压 |
0.0±1.3 mmHg at 25°C
|
|
| 折射率 |
1.724
|
|
| LogP |
5.97
|
|
| tPSA |
63.21
|
|
| 氢键供体(HBD)数目 |
1
|
|
| 氢键受体(HBA)数目 |
3
|
|
| 可旋转键数目(RBC) |
3
|
|
| 重原子数目 |
21
|
|
| 分子复杂度/Complexity |
365
|
|
| 定义原子立体中心数目 |
0
|
|
| SMILES |
ClC1C([H])=C2C(=C([H])C=1OC1C([H])=C([H])C([H])=C(C=1Cl)Cl)N=C(N2[H])SC([H])([H])[H]
|
|
| InChi Key |
NQPDXQQQCQDHHW-UHFFFAOYSA-N
|
|
| InChi Code |
InChI=1S/C14H9Cl3N2OS/c1-21-14-18-9-5-8(16)12(6-10(9)19-14)20-11-4-2-3-7(15)13(11)17/h2-6H,1H3,(H,18,19)
|
|
| 化学名 |
6-Chloro-5-(2,3-dichlorophenoxy)-2-methylsulfanyl-1H-benzimidazole
|
|
| 别名 |
|
|
| HS Tariff Code |
2934.99.9001
|
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
|
|||
|---|---|---|---|---|
| 溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (6.95 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.08 mg/mL (5.78 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.08 mg/mL (5.78 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 2.7804 mL | 13.9020 mL | 27.8040 mL | |
| 5 mM | 0.5561 mL | 2.7804 mL | 5.5608 mL | |
| 10 mM | 0.2780 mL | 1.3902 mL | 2.7804 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。