规格 | 价格 | 库存 | 数量 |
---|---|---|---|
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
5g |
|
||
10g |
|
||
Other Sizes |
|
靶点 |
PDE5 (IC50 = 0.7 nM); PDE6 (IC50 = 11 nM); PDE1 (IC50 = 180 nM); PDE3 (IC50 >1000 nM); PDE4 (IC50 >1000 nM)
|
---|---|
体外研究 (In Vitro) |
盐酸伐地那非的 IC50 为 0.7 nM,可选择性阻止 PDE5 水解 cGMP[1]。当盐酸伐地那非提高阴茎海绵体组织中的细胞内 cGMP 水平时,身体的鼻窦扩大,血流增强 [3]。
|
体内研究 (In Vivo) |
对于患有海绵体神经损伤的大鼠,盐酸伐地那非(IV;0.03 mg/kg)发挥促进作用[4]。盐酸伐地那非(IV;每日一次;0.17 mg/kg;7 天)可降低肝组织中的 NF-,保护肝脏免受 Con A 引起的肝炎[5]。在 ZDF 心脏中,盐酸伐地那非(口服;10 mg/kg,每日一次;25 周)可抑制 3-NT 合成的上升和组织 cGMP 水平的下降 [6]。
|
酶活实验 |
在这项研究中,研究人员调查了伐地那非对磷酸二酯酶(PDE)酶的效力和选择性,其改变cGMP代谢和引起阴茎平滑肌放松的能力,以及在外源性一氧化氮(NO)刺激条件下对体内勃起的影响。PDE同工酶从人血小板(PDE5)或牛来源(PDE 1、2、3、4和6)中提取和纯化。测定了伐地那非对这些PDE和人重组PDE的抑制作用。在体外测量了增强NO介导的松弛和影响人海绵体条中cGMP水平的能力,并在口服和静脉注射硝普钠(SNP)后,在清醒的兔子身上证明了勃起诱导活性。将伐地那非的效果与公认的PDE5抑制剂西地那非的效果进行了比较(括号内为西地那菲的值)。伐地那非特异性抑制PDE5对cGMP的水解,IC50为0.7 nM(6.6 nM)。相比之下,伐地那非对PDE1的IC50为180 nM;对PDE6的IC50为11 nM;对于PDE2、PDE3和PDE4的IC50超过1000 nM。相对于PDE5,PDE1的IC50比率为257(60),PDE6为16(7.4)。在3 nM(10 nM)的浓度下,伐地那非显著增强了SNP诱导的人小梁平滑肌松弛。伐地那非还显著增强了ACh诱导和透壁电刺激诱导的小梁平滑肌松弛。显著增强SNP诱导的cGMP积累的伐地那非最低浓度为3 nM(30 nM)[1]。
|
动物实验 |
Animal/Disease Models: Male rat (9weeks old) underwent surgery for laparotomy or bilateral cavernous nerve (CN) crush injury[4]
Doses: 0.03 mg/kg Route of Administration: intravenous (iv) injection Experimental Results: Restored normal erectile responses with a combind administration of BAY 60-4552 (0.03, 0.3 mg/kg). Animal/Disease Models: Liver injury induced by Con A in male Swiss albino mice (20 ± 2 g)[5] Doses: 0.17 mg/kg Route of Administration: intravenous (iv) injection; one time/day, for 7 days; as a pretreatment Experimental Results: decreased the levels of serum transaminases and alleviated Con A-induced hepatitis. Animal/Disease Models: Male 7weeks old Zucker diabetic fatty (ZDF) rats (preserved ejection fraction, HFpEF)[6] Doses: 10 mg/kg Route of Administration: po (oral gavage); one time/day, for 25 weeks Experimental Results: Improved myofilament function in diabetic rat hearts. |
药代性质 (ADME/PK) |
Absorption
Over the recommended dose range, vardenafil has a dose-proportional pharmacokinetics profile. In healthy male volunteers given a single oral dose of 20 mg of vardenafil, maximum plasma concentrations were reached between 30 minutes and 2 hours (median 60 minutes) after oral dosing in the fasted state, and 0.00018% of the dose was detected in semen 1.5 hours after dosing. Vardenafil has a bioavailability of approximately 15%. High-fat meals cause a Cmax reduction of 18%-50%; however, no changes were detected in AUC or Tmax. Route of Elimination Vardenafil is excreted as metabolites mainly through feces and urine. Approximately 91-95% of administered oral dose is found in feces, while 2-6% of administered oral dose is found in urine. Volume of Distribution Vardenafil has a steady-state volume of distribution of 208 L. Clearance Vardenafil has a total body clearance of 56 L/h. Protein binding: Very high: 95% bound to plasma proteins; reversible and independent of total drug concentrations Rapidly absorbed; absolute bioavailability is approximately 15%. Maximum observed plasma concentrations after a single 20 mg dose in healthy volunteers are usually reached between 30 minutes and 2 hours (median 60 minutes) after oral dosing in the fasted state. A high-fat meal causes a reduction in Cmax by 18% to 50%. Enhancement of nitric oxide (NO)-induced erections in rabbits by 0.1 mg/kg vardenafil is limited by its pharmacokinetic properties (Tmax=1 h; T1/2=1.2 h), although erectile effects have been observed after 7 h. In humans, vardenafil is rapidly absorbed (Tmax approximately 40 min) and more slowly metabolized (T1/2 approximately 4 h), with an absolute bioavailability of 14.5% (vs 40% for sildenafil). Although the consumption of high-fat meals does not affect the drug's relative bioavailability, it retards intestinal absorption. Coadministration of CYP3A4 inhibitors such as ritonavir can affect hepatic metabolism. M1, an active metabolite of vardenafil, is a four-fold-less potent inhibitor of PDE5 than its parent compound, contributing approximately 7% to vardenafil's overall efficacy. PMID:15224134 Time to peak concentration: 30 minutes to 2 hours (oral dosing, fasted state) Metabolism / Metabolites Vardenafil is mainly metabolized by CYP3A4 in the liver, although CYP3A5 and CYP2C isoforms also contribute to its metabolism. The major circulating metabolite, M1 (N-desethylvardenafil), results from desethylation at the piperazine moiety of vardenafil, and has a plasma concentration of approximately 26% of that of the parent compound. M1 has a phosphodiesterase selectivity profile similar to that of vardenafil and an _in vitro_ inhibitory potency for PDE5 28% of that of vardenafil. Hepatic metabolism, via CYP3A4, with contribution from CYP3A5 and CYP2C isoforms. Major circulating metabolite, M1, results from desethylation at the piperazine moiety of vardenafil. M1 is subject to further metabolism. The plasma concentration of M1 is approximately 26% of the parent compound and accounts for 7% of total pharmacologic activity. This metabolite shows a phosphodiesterase selectivity profile similar to that of vardenafil and an in vitro inhibitory potency for PDE5 28% of that of vardenafil. Biological Half-Life Vardenafil and its primary metabolite (M1) have a terminal half-life of 4-5 hours. |
毒性/毒理 (Toxicokinetics/TK) |
Hepatotoxicity
Despite fairly extensive use, vardenafil has not been associated with clinically apparent cases of liver injury and serum enzyme elevations during therapy are rare. The related PDE5 inhibitors, sildenafil and tadalafil have been linked to isolated, rare instances of acute liver injury and jaundice. The latency to onset ranged from a few days to 3 months and the pattern of injury was usually cholestatic. Autoimmune and immunoallergic features were not observed and all cases were self-limited without residual injury or acute liver failure. Whether vardenafil can cause a similar form of acute liver injury is unknown. Likelihood score: E* (unproven but suspected rare cause of clinically apparent liver injury). Interactions Vardenafil has not been studied in combination with other treatments for erectile dysfunction; use of combination erectile dysfunction medication is not recommended. Alpha-blockers, such as: Terazosin, tamsulosin, doxazosin, prazosin, alfuzosin: Use is contraindicated; co-administration can produce hypotension) Erythromycin produced a 4-fold increase in vardenafil AUC and a 3-fold increase in Cmax /when administered to healthy volunteers/. Protein Binding Approximately 95% of vardenafil and its major circulating metabolite is bound to plasma proteins. Their protein binding is reversible and independent of total drug concentrations. |
参考文献 | |
其他信息 |
A piperazine derivative, PHOSPHODIESTERASE 5 INHIBITOR and VASODILATOR AGENT that is used as a UROLOGICAL AGENT in the treatment of ERECTILE DYSFUNCTION.
|
分子式 |
C23H32N6O4S.HCL
|
---|---|
分子量 |
525.06
|
精确质量 |
524.197
|
CAS号 |
224785-91-5
|
相关CAS号 |
Vardenafil;224785-90-4;Vardenafil hydrochloride trihydrate;330808-88-3;Vardenafil dihydrochloride;224789-15-5
|
PubChem CID |
135438569
|
外观&性状 |
White to off-white solid powder
|
沸点 |
692.2ºC at 760 mmHg
|
熔点 |
214-216ºC
|
闪点 |
372.5ºC
|
蒸汽压 |
5.17E-19mmHg at 25°C
|
LogP |
3.829
|
tPSA |
121.28
|
氢键供体(HBD)数目 |
2
|
氢键受体(HBA)数目 |
8
|
可旋转键数目(RBC) |
8
|
重原子数目 |
35
|
分子复杂度/Complexity |
854
|
定义原子立体中心数目 |
0
|
InChi Key |
XCMULUAPJXCOHI-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C23H32N6O4S.ClH/c1-5-8-20-24-16(4)21-23(30)25-22(26-29(20)21)18-15-17(9-10-19(18)33-7-3)34(31,32)28-13-11-27(6-2)12-14-28;/h9-10,15H,5-8,11-14H2,1-4H3,(H,25,26,30);1H
|
化学名 |
2-[2-ethoxy-5-(4-ethylpiperazin-1-yl)sulfonylphenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one;hydrochloride
|
别名 |
Vardenafil hydrochloride; 224785-91-5; Vardenafil HCL; Vardenafil (hydrochloride); Vardenafilhydrochloride; Vardenafil, Hydrochloride Salt; Vardenafil hydrochloride [USAN]; VARDENAFIL MONOHYDROCHLORIDE;
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO : ~100 mg/mL (~190.45 mM)
H2O : ≥ 100 mg/mL (~190.45 mM) |
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (4.76 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (4.76 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (4.76 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: 120 mg/mL (228.55 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶. 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 1.9045 mL | 9.5227 mL | 19.0454 mL | |
5 mM | 0.3809 mL | 1.9045 mL | 3.8091 mL | |
10 mM | 0.1905 mL | 0.9523 mL | 1.9045 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。