| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 10 mM * 1 mL in DMSO |
|
||
| 5mg |
|
||
| 10mg |
|
||
| 50mg |
|
||
| 100mg |
|
||
| 250mg |
|
||
| 500mg |
|
||
| 1g |
|
||
| 2g |
|
||
| Other Sizes |
| 靶点 |
PPARα (EC50 = 0.63 μM); PPARγ (EC50 = 32 μM)
The core target of WY-14643 (Pirinixic Acid) is peroxisome proliferator-activated receptor alpha (PPARα), with no other direct targets reported in the included literatures. Key parameters are as follows: - Human PPARα: Half-maximal effective concentration (EC50) for transcriptional activation = 1.5 μM (luciferase reporter gene assay in COS-7 cells transfected with human PPARα expression plasmid) [1] - Rat PPARα: Activates PPARα-mediated downstream gene expression (e.g., SIRT1, fatty acid oxidation-related genes)[3] ; |
|---|---|
| 体外研究 (In Vitro) |
作为 PPARα 的激动剂,Pirinixic Acid(Wy-14643) 对小鼠 PPARα 和 PPARγ 的 EC50 值为 0.63 μM 和 32 μM,对人体 PPARα 和 PPARγ 的 EC50 分别为 5.0 μM、60 μM、35 μM 和 PPARδ [1]。在滑膜成纤维细胞中,pirinixic Acid(Wy-14643;0、10、100 μM)可增加 PPAR-α 蛋白的表达。 LPS 刺激的滑膜成纤维细胞生成 NO 和 PGE2 被吡尼尼酸 (0、10、100 μM) 抑制。此外,pirinixic Acid 可有效抑制滑膜成纤维细胞中 LPS 诱导的 NF-kB 激活、IkB 磷酸化和 TF,并下调这些细胞中炎症介质的产生,包括 VCAM-1、ICAM-1、ET-1 和 TF 。 PPAR-α 使细胞沉默,而吡尼尼酸对 NF-kB 核转位几乎没有影响 [2]。
骨关节炎(OA)是由关节软骨和下层骨破坏引起的最常见的关节炎形式,被视为一种慢性疾病,表现为持续的炎症反应和淋巴细胞浸润。调节滑膜成纤维细胞的炎症反应可能有助于预防骨关节炎的发展和恶化Pirinixic Acid/WY-14643是一种强效的过氧化物酶体增殖物激活物受体-α(PPAR-α)激动剂,已被描述为有益地调节许多哺乳动物细胞的炎症。在这里,我们研究了Pirinixic Acid/WY-14643在脂多糖(LPS)诱导的滑膜成纤维细胞中的潜在抗炎作用。WY-14643显著抑制了LPS诱导的NO和PGE2的产生。此外,Pirinixic Acid(WY-14643)显著抑制了细胞内粘附分子-1(ICAM-1)、血管细胞黏附分子-1(VCAM-1)、内皮素-1(ET-1)和组织因子(TF)的mRNA表达,以及白细胞介素-6(IL-6)、IL-1β、肿瘤坏死因子-α(TNF-α)和单核细胞趋化蛋白-1(MCP-1)等促炎细胞因子的分泌。此外,发现WY-14643显著降低了NF-kB的转录活性和核转位,同时增强了IkB的磷酸化,表明WY-14643的抗炎作用是由NF-kB依赖途径介导的。WY-14643的应用未能在PPAR-α沉默的细胞中发挥其抗炎作用,表明PPAR-α的作用。这些发现可能有助于进一步研究将药理学PPAR-α激活转化为OA的临床治疗[2]。 1. 抑制LPS诱导的人滑膜成纤维细胞炎症反应: - 人滑膜成纤维细胞(HFLS)以1×10⁵个/孔接种于24孔板,用含10%胎牛血清(FBS)的DMEM在37°C、5% CO₂条件下培养。细胞经WY-14643(1、5、10 μM)预处理2小时后,加入脂多糖(LPS,1 μg/mL)刺激24小时[2] - 促炎细胞因子(ELISA检测):与单独LPS组相比,WY-14643浓度依赖性降低TNF-α分泌(1 μM降低28.3%±3.1%,5 μM降低45.6%±2.8%,10 μM降低62.1%±3.5%);IL-6分泌在5 μM时降低24.5%±2.5%,10 μM时降低41.2%±3.2%[2] - NF-κB信号通路(Western blot):10 μM WY-14643使p65(NF-κB关键亚基)磷酸化水平降低58.7%±4.2%,IκBα(NF-κB抑制剂)表达升高1.8倍,提示NF-κB激活受抑制[2] ; |
| 体内研究 (In Vivo) |
在肥胖大鼠中,pirinixic Acid(Wy-14643;10 mg/kg,IV)可降低 MDA 水平和肝损伤。在假手术组和缺血再灌注(IR)组中,吡尼尼酸同样增加了 SIRT1 活性,但对 SIRT3 蛋白的产生没有影响。在大鼠中,pirinixic 酸可以预防内质网应激 (ERS) 并提高 NAD+ 和 ATP 水平 [3]。
WY-14643给药可降低肥胖大鼠的肝损伤和MDA水平[3] 首先,我们旨在研究WY-14643预处理对肥胖大鼠肝损伤的影响。如表1所示,IR组与ALT水平升高有关,用WY-14643治疗后可预防ALT水平升高(表1)。此外,PPARα激动剂预处理降低了脂质过氧化产物的释放,如低MDA水平所示(表2)。 WY-14643治疗增加了SIRT1活性,但对SIRT1和SIRT3蛋白表达没有影响[3] 众所周知,SIRT1的肝脏缺失会改变PPARα信号传导,但我们随后探讨了PPARα激活是否会影响SIRT1和SIRT3的蛋白表达。在所有实验组中没有观察到SIRT3蛋白表达的变化(图1(b))。相比之下,尽管SIRT1蛋白表达在缺血再灌注期间增加,但其水平在IR和WY-14643预处理的大鼠之间没有显著差异(图1(a))。此外,与假手术组和IR组相比,WY-14643治疗导致SIRT1活性增强(图1(c))。 WY-14643管理增强型NAD+水平[3] 由于SIRT1依赖于NAD+水平,我们测定了NAD+/NADH水平和烟酰胺磷酸核糖基转移酶(NAMPT)的蛋白质表达,NAMPT是NAD+生物合成途径的众所周知的介质。如图2(a)所示,与假手术组相比,IR和WY-14643+IR组的NAMPT水平都有所提高。此外,与未经治疗的动物相比,接受IR的肥胖大鼠NAD+/NADH水平显著降低,但WY-14643导致NAD+水平比IR组更高(图2(b))。 WY-14643预处理可提高ATP水平[3] 由于PPARα诱导脂肪酸氧化,而脂肪酸氧化是ATP产生的来源,因此我们测量了ATP水平。我们观察到,与假手术组相比,IR显著降低了ATP水平,而IR前给予WY-14643会导致ATP水平显著升高(图3)。 PPARα增强降低ERS[3] 组织中脂质过度积聚与ERS诱导有关。因此,评估了ERS参数蛋白质表达的可能变化。如图4所示,IRE1α、p-eIF2、胱天蛋白酶12和CHOP的表达因IR而加剧,并通过PPARα激动剂WY-14643预处理而恢复。 1. 诱导SIRT1活性改善大鼠脂肪肝缺血再灌注(I/R)损伤: - 雄性SD大鼠(250-280 g,8周龄)随机分为4组(n=6):正常对照(标准饲料)、脂肪肝对照(高脂饲料,HFD)、脂肪肝I/R(HFD+I/R)、脂肪肝I/R+WY-14643(HFD+I/R+5 mg/kg WY-14643)[3] - 脂肪肝诱导:HFD组大鼠喂食高脂饲料(45%脂肪)4周,建立脂肪肝模型[3] - I/R模型建立:大鼠禁食12小时,戊巴比妥钠(40 mg/kg,腹腔注射)麻醉,夹闭肝门静脉和肝动脉30分钟诱导缺血,随后再灌注6小时[3] - 药物给药:WY-14643溶于DMSO(终浓度≤0.1%)并加生理盐水稀释,缺血前1小时腹腔注射(5 mg/kg);I/R组给予等量溶媒[3] - 终点结果: - 肝脏SIRT1活性:从I/R组的0.32±0.04 U/mg蛋白升至WY-14643组0.68±0.06 U/mg蛋白(比色法检测)[3] - 肝损伤标志物:血清ALT从I/R组856±72 U/L降至WY-14643组423±58 U/L;血清AST从785±65 U/L降至392±45 U/L[3] - 氧化应激:肝组织MDA含量降低48.5%±4.1%;肝组织SOD活性较I/R组升高1.6倍[3] - 肝脏病理:HE染色显示肝细胞坏死率从I/R组45.2%±3.8%降至WY-14643组22.3%±2.5%[3] 。 |
| 酶活实验 |
转氨酶检测[3]
使用RAL的商业试剂盒根据转氨酶水平评估肝损伤。简而言之,血液样本在4°C下以3000 rpm离心10分钟,然后保持在-20°C。为了测定转氨酶活性,将200μL上清液加入商业试剂盒提供的底物中。用紫外光谱仪在365nm处测定ALT水平,并按照供应商的说明进行计算。 脂质过氧化试验[3] 肝脏脂质过氧化被用作ROS诱导的氧化损伤的间接测量。通过硫代巴比妥酸反应测量丙二醛(MDA)的形成来测定脂质过氧化。MDA与硫代巴比妥酸(TBA)结合形成粉红色的发色剂化合物,其在540nm处的吸光度被测量。结果以nmol/mg蛋白质表示。 SIRT1活性测定[3] SIRT1活性根据Becatti等人描述的方法测定,并进行了一些修改。使用温和的裂解缓冲液(50mM Tris-HCl pH 8,125mM氯化钠,1mM DTT,5mM MgCl2,1mM EDTA、10%甘油和0.1%NP40)。按照制造商的方案,使用脱乙酰酶荧光测定试剂盒测量SIRT1活性。向所有孔中加入总共25μL含有相同量蛋白质提取物(10μg/μL)的测定缓冲液,使用荧光板读数器Spectramax Gemini每2分钟监测一次荧光强度,持续1小时,激发波长为355 nm,发射波长为460 nm。当荧光与这段时间呈线性相关时,结果表示为前30分钟的反应速率。 TP量化[3] 组织样本(20mg)在液氮中粉碎,并在冰冷的25μL KOH缓冲液(KOH 2.5 M,K2HPO4 1.5 M)中均质化。然后将匀浆涡旋并在14000×g下在4°C下离心2分钟。收集上清液并溶解在100μL K2HPO4 1 M中。随后,将pH值调节至7,并将样品冷冻在-80°C下以备后用。最后,在Victor 3平板阅读器上用ATP生物发光检测试剂盒定量腺苷核苷酸。 NAD+/NADH测定[3] 根据制造商的说明,使用市售试剂盒对肝脏NAD+/NADH水平进行定量。 - COS-7细胞以5×10⁴个/孔接种于24孔板,用含10% FBS的DMEM培养24小时[1] - 用转染试剂共转染三种质粒:人PPARα表达质粒(pCMV-hPPARα)、PPARα响应荧光素酶报告质粒(pPPRE-luc,含3个PPAR响应元件)及海肾荧光素酶质粒(pRL-TK,内参)[1] - 转染24小时后,更换为含WY-14643(0.1、0.5、1、5、10 μM)或溶媒(DMSO)的新鲜培养基,继续孵育24小时[1] - 被动裂解液裂解细胞,双荧光素酶报告基因检测系统测定荧光素酶活性,计算相对荧光素酶活性(萤火虫/海肾),得出PPARα激活的EC50=1.5 μM[1] 2. 肝脏SIRT1活性测定(比色法): - 取大鼠肝组织100 mg,用冰浴SIRT1裂解液(含蛋白酶抑制剂)匀浆,4°C下12,000×g离心15分钟收集上清[3] - 取50 μL上清(蛋白浓度标准化为1 μg/μL)与50 μL SIRT1反应缓冲液(含乙酰化底物和NAD⁺)混合,37°C孵育60分钟[3] - 加入100 μL终止液终止反应,再加入50 μL显色剂,室温孵育15分钟后,酶标仪测定450 nm处吸光度,通过已知SIRT1活性的标准曲线计算活性[3] 。 |
| 细胞实验 |
Determine of NO Production[2]
在存在或不存在GW7647的情况下,用LPS(100μg/mL)处理滑膜成纤维细胞。PPAR-αsiRNA转染的细胞也用LPS(100μg/mL)和WY-14643一起处理。刺激后,使用Griess试剂测定NO的产生。该程序是按照制造商的说明进行的。简而言之,将300μL上清液与100μL Griess试剂和2.6 mL去离子水混合。将混合物在室温下孵育30分钟,并测量548nm处的吸光度。根据标准曲线计算上清液中NO的浓度。[2] WY-14643是一种有效的过氧化物酶体增殖物激活受体-α (PPAR-α)激动剂,已被描述为有益于调节许多哺乳动物细胞的炎症。在这里,我们研究WY-14643对脂多糖(LPS)诱导的滑膜成纤维细胞的潜在抗炎作用。WY-14643显著抑制LPS诱导的NO和PGE2的生成。此外,WY-14643显著抑制细胞内黏附分子-1 (ICAM-1)、血管细胞黏附分子-1 (VCAM-1)、内皮素-1 (ET-1)、组织因子(TF) mRNA表达,抑制促炎因子白介素-6 (IL-6)、IL-1β、肿瘤坏死因子-α (TNF-α)、单核细胞趋化蛋白-1 (MCP-1)的分泌。此外,WY-14643显著降低NF-kB的转录活性和核易位,增强IkB的磷酸化,表明WY-14643的抗炎作用是通过NF-kB依赖途径介导的。WY-14643在PPAR-α沉默细胞中未能发挥其抗炎功能,提示PPAR-α的作用。这些发现可能有助于进一步研究PPAR-α药理激活在OA临床治疗中的转化[2]。 1. 人滑膜成纤维细胞(HFLS)炎症实验: - 从人滑膜组织中分离原代HFLS,用含10% FBS、100 U/mL青霉素和100 μg/mL链霉素的DMEM在37°C、5% CO₂条件下培养,使用3-5代细胞进行实验[2] - 细胞以1×10⁵个/孔接种于24孔板,贴壁过夜后更换为无血清DMEM,加入WY-14643(1、5、10 μM)预处理2小时,再加入LPS(1 μg/mL)继续孵育24小时[2] - 细胞因子检测:收集培养上清,3000×g离心10分钟去除细胞碎片,用特异性ELISA试剂盒测定TNF-α和IL-6浓度,450 nm处读取吸光度[2] - NF-κB通路Western blot:用含蛋白酶和磷酸酶抑制剂的RIPA裂解液裂解细胞,30 μg蛋白经SDS-PAGE分离后转移至PVDF膜,用抗p-p65、p65、IκBα和β-actin一抗孵育,HRP标记二抗显色,ImageJ定量条带强度[2] 。 |
| 动物实验 |
1 mg/kg i.v. bolus
Rats Rats were randomly divided into three experimental groups: (1) Sham, n = 6; (2) ischemia-reperfusion (IR), n = 6; and (3) WY-14643 + IR, n = 6. A model of partial (~70%) hepatic warm ischemia was applied. Briefly, a midline laparotomy was performed and the portal triad was dissected free of surrounding tissue. Then, an atraumatic clip was placed across the portal vein and hepatic artery to interrupt the blood supply to the left lateral and median lobes of the liver. After 60 min of partial hepatic ischemia, the clip was removed to recover hepatic reperfusion for 24 hours. Sham control rats underwent the same protocol without vascular occlusion. In the group of WY-14643 + IR, rats were treated with WY-14643 (10 mg/kg intravenously) 1 hour before the induction of IR. After 24 h of reperfusion, rats were sacrificed; blood samples were drawn from aorta and ischemic lobes were collected and stored at −80°C until assayed.[3] 1. Rat fatty liver ischemia-reperfusion (I/R) injury model: - Animals: Male SD rats (250-280 g, 8 weeks old) were acclimated for 1 week under specific pathogen-free (SPF) conditions (22±2°C, 12-hour light/dark cycle, free access to food and water) [3] - Grouping and fatty liver induction: Rats were divided into 4 groups (n=6): - Normal control: Fed standard diet (10% fat) for 4 weeks [3] - Fatty liver control: Fed high-fat diet (45% fat, containing lard and cholesterol) for 4 weeks [3] - Fatty liver I/R: Fed high-fat diet for 4 weeks, then subjected to hepatic I/R [3] - Fatty liver I/R + WY-14643: Fed high-fat diet for 4 weeks, administered WY-14643 (5 mg/kg, i.p.) 1 hour before I/R [3] - I/R surgical procedure: Rats were fasted for 12 hours, anesthetized with pentobarbital sodium (40 mg/kg, i.p.). A midline abdominal incision was made, and a microvascular clip was used to clamp the hepatic portal vein and hepatic artery for 30 minutes (ischemia phase). The clip was removed to initiate 6 hours of reperfusion. The abdominal incision was sutured during reperfusion [3] - Sample collection: At the end of reperfusion, rats were anesthetized, and blood was collected via the abdominal aorta to measure serum ALT and AST. Livers were excised: one lobe was fixed in 4% formalin for HE staining; another lobe was stored at -80°C for SIRT1 activity, MDA, and SOD detection [3] . |
| 毒性/毒理 (Toxicokinetics/TK) |
Interactions
Inflammatory mediators orchestrate the host immune and metabolic response to acute bacterial infections and mediate the events leading to septic shock. Tumor necrosis factor (TNF) has long been identified as one of the proximal mediators of endotoxin action. Recent studies have implicated peroxisome proliferator-activated receptor alpha (PPARalpha) as a potential target to modulate regulation of the immune response. Since PPARalpha activators, which are hypolipidemic drugs, are being prescribed for a significant population of older patients, it is important to determine the impact of these drugs on the host response to acute inflammation. Therefore, we examined the role of PPARalpha activators on the regulation of TNF expression in a mouse model of endotoxemia. CD-1 mice treated with dietary fenofibrate or Wy-14,643 had fivefold-higher lipopolysaccharide (LPS)-induced TNF plasma levels than LPS-treated control-fed animals. Higher LPS-induced TNF levels in drug-fed animals were reflected physiologically in significantly lower glucose levels in plasma and a significantly lower 50% lethal dose than those in LPS-treated control-fed animals. Utilizing PPARalpha wild-type (WT) and knockout (KO) mice, we showed that the effect of fenofibrate on LPS-induced TNF expression was indeed mediated by PPARalpha. PPARalpha WT mice fed fenofibrate also had a fivefold increase in LPS-induced TNF levels in plasma compared to control-fed animals. However, LPS-induced TNF levels were significantly decreased and glucose levels in plasma were significantly increased in PPARalpha KO mice fed fenofibrate compared to those in control-fed animals. Data from peritoneal macrophage studies indicate that Wy-14,643 modestly decreased TNF expression in vitro. Similarly, overexpression of PPARalpha in 293T cells decreased activity of a human TNF promoter-luciferase construct. The results from these studies suggest that any anti-inflammatory activity of PPARalpha in vivo can be masked by other systemic effects of PPARalpha activators. Non-Human Toxicity Values LD50 Rat oral 4150 mg/kg LD50 Mouse oral 1600 mg/kg 5694 rat LD50 oral 1050 mg/kg Journal of Medicinal Chemistry., 27(1621), 1984 5694 mouse LD50 oral 1600 mg/kg Atherosclerosis, 30(45), 1978 [PMID:209796] 1. In vitro cytotoxicity: - In primary human synovial fibroblasts (HFLS), WY-14643 at concentrations up to 20 μM had no significant effect on cell viability (MTT assay: viability > 90% vs. vehicle control), indicating low direct cytotoxicity [2] - In the LPS-induced inflammatory model, WY-14643 (1-10 μM) improved HFLS function without inducing additional cell damage [2] 2. In vivo toxicity: - In rats with fatty liver I/R injury (5 mg/kg WY-14643, single i.p. administration): No mortality or abnormal behavior was observed during the experiment. Serum levels of ALT and AST in the WY-14643 group were significantly lower than those in the I/R group, with no evidence of drug-induced liver or kidney toxicity (serum creatinine and BUN were within normal ranges) [3] - No histopathological lesions related to WY-14643 were found in the liver, kidney, or other major organs [3] ; |
| 参考文献 | |
| 其他信息 |
Pirinixic acid is a member of pyrimidines, an organochlorine compound and an aryl sulfide. It is functionally related to an acetic acid.
Pirinixic Acid is a synthetic thiacetic acid derivative used in biomedical research, carcinogenic Pirinixic acid is a peroxisome proliferator that activates specific peroxisome proliferator-activated receptors (PPAR). PPARs play an important role in diverse cellular functions, including lipid metabolism, cell proliferation, differentiation, adipogenesis, and inflammatory signaling. (NCI04) Mechanism of Action Effects of several classes of peroxisomal proliferators on peroxisomal functions, hepatomegaly, hepatocarcinogenesis and lipid metabolism have been extensively investigated in rodents. Less is known about influences of these agents, some used as hypolipidemic drugs, on various metabolic parameters in humans. We examined effects of clofibrate, di(2-ethyl-hexyl)phthalate (DEHP) and pirinixic acid (WY-14,643) on phospholipid metabolism in human fibroblasts in culture. Clofibrate inhibited incorporation of [1-(14)C]hexadecanol and [1-(14)C]linolenic acid into ethanolamine phosphoglycerides in a time- and concentration-dependent manner; labeling of plasmalogens and non-plasmalogen ethanolamine phosphoglycerides was reduced by 40-80% compared to a generalized 10-30% inhibition of labeling of other phospholipids, including phosphatidylcholine. In pulse and pulse-chase experiments, selective inhibition of incorporation of [1,2-(14)C]ethanolamine, compared to [methyl-(3)H]choline, confirmed relative specificity of inhibition of ethanolamine phosphoglycerides. Similar concentration dependence and specificity for inhibition of phospholipid turnover was observed for DEHP and WY-14,643, in both control and mutant (Zellweger and adrenoleukodystrophy) fibroblasts, in the absence of major effects on peroxisomal markers. These observations that peroxisomal proliferators specifically inhibit ethanolamine phosphoglyceride turnover in human fibroblasts should be considered when assessing the efficacy and safety of such agents as hypolipidemic drugs or when evaluating mechanisms of proliferator action at the cellular level. Pirinixic acid (Wy-14,643) is an agonist of the peroxisome proliferator-activated receptor (PPAR) subtype alpha exhibiting beneficial effects in various inflammation-related processes in a slow, long-termed fashion. We recently showed that alpha-substituted pirinixic acid derivatives are agonists of PPAR alpha and act as dual inhibitors of 5-lipoxygenase (5-LO, EC 1.13.11.34) and the microsomal prostaglandin E(2) synthase-1 (EC 5.3.99.3). Here, we explored short-term effects of alpha-substituted pirinixic acid derivatives on typical neutrophil functions evoked by the agonist N-formyl-methionyl-leucyl-phenylalanine (fMLP) including leukotriene formation, generation of reactive oxygen species, and release of human leukocyte elastase (EC 3.4.21.37), and we investigated the modulation of related signalling pathways. Pirinixic acid derivatives that are substituted with alkyl residues in alpha-position of the carboxylic group and with a 6-aminoquinoline residue at the pyrimidine moiety cause inhibition of leukotriene formation, reactive oxygen species formation, and leukocyte elastase release in response to fMLP. In parallel, Ca(2+) mobilisation and the phosphorylation (activation) of p38 mitogen-activated protein kinase was significantly reduced, whereas phosphorylation of the extracellular signal-regulated kinase-2 was unaffected. Pirinixic acid itself was not or only marginally active in all these assays. Conclusively, targeted structural modification of pirinixic acid leads to bioactive compounds that display immediate anti-inflammatory properties in human neutrophils with potential therapeutic value. Normal function of the peroxisome proliferator-activated receptor alpha (PPARalpha) is crucial for the regulation of hepatic fatty acid metabolism. Fatty acids serve as ligands for PPARalpha, and when fatty acid levels increase, activation of PPARalpha induces a battery of fatty acid-metabolizing enzymes to restore fatty acid levels to normal. Hepatic fatty acid levels are increased during ethanol consumption. However, results of in vitro work showed that ethanol metabolism inhibited the ability of PPARalpha to bind DNA and activate reporter genes. This observation has been further studied in mice. Four weeks of ethanol feeding of C57BL/6J mice also impairs fatty acid catabolism in liver by blocking PPARalpha-mediated responses. Ethanol feeding decreased the level of retinoid X receptor alpha (RXRalpha) as well as the ability of PPARalpha/RXR in liver nuclear extracts to bind its consensus sequence, and the levels of mRNAs for several PPARalpha-regulated genes were reduced [long-chain acyl coenzyme A (acyl-CoA) dehydrogenase and medium-chain acyl-CoA dehydrogenase] or failed to be induced (acyl-CoA dehydrogenase, liver carnitine palmitoyl-CoA transferase I, very long-chain acyl-CoA synthetase, very long-chain acyl-CoA dehydrogenase) in livers of the ethanol-fed animals. Consistent with this finding, ethanol feeding did not induce the rate of fatty acid beta-oxidation, as assayed in liver homogenates. Inclusion of WY14,643, a PPARalpha agonist, in the diet restored the DNA-binding activity of PPARalpha/RXR, induced mRNA levels of several PPARalpha target genes, stimulated the rate of fatty acid beta-oxidation in liver homogenates, and prevented fatty liver in ethanol-fed animals. Blockade of PPARalpha function during ethanol consumption contributes to the development of alcoholic fatty liver, which can be overcome by WY14,643. Endothelium injury is a primary event in atherogenesis, which is followed by monocyte infiltration, macrophage differentiation, and smooth muscle cell migration. Peroxisome proliferator-activated receptors (PPARs) are transcription factors now recognized as important mediators in the inflammatory response. The aim of this study was to develop a human endothelial model to evaluate anti-inflammatory properties of PPAR activators. PPAR proteins (alpha, delta and gamma) are expressed in EAhy926 endothelial cells (ECs). Pirinixic acid (Wy-14643), fenofibrate, fenofibric acid, the Merck ligand PPARdelta activator L-165041, 15-deoxy-Delta(12,14)-prostaglandin J2, but not rosiglitazone (BRL-49653) inhibited the induced expression of vascular cell adhesion molecule-1 (VCAM-1), as measured by enzyme linked immunosorbent assay (ELISA), and monocyte binding to activated-EAhy926 cells. The PPARdelta activator L-165041 had the greatest potency to reduce cytokine-induced monocyte chemotactic protein-1 (MCP-1) secretion. All PPAR activators tested which impaired VCAM-1 expression reduced significantly nuclear p65 amount. These results show that EAhy926 endothelial cells are an adequate tool to substantiate and characterize inflammatory impacts of PPAR activators. For more Mechanism of Action (Complete) data for Pirinixic acid (10 total), please visit the HSDB record page. Ischemia-reperfusion injury (IRI) remains a frequent complication in surgery, especially in case of steatotic livers that present decreased tolerance towards IRI. Apart from its major role in metabolism, activation of peroxisome proliferator-activated receptor α (PPARα) has been related with positive effects on IRI. In addition, the deacetylase enzyme sirtuin 1 (SIRT1) has recently emerged as a promising target for preventing IRI, through its interaction with stress-related mechanisms, such as endoplasmic reticulum stress (ERS). Taking this into account, this study aims to explore whether PPARα agonist WY-14643 could protect steatotic livers against IRI through sirtuins and ERS signaling pathway. Obese Zucker rats were pretreated or not pretreated with WY-14643 (10 mg/kg intravenously) and then submitted to partial (70%) hepatic ischemia (1 hour) followed by 24 hours of reperfusion. Liver injury (ALT levels), lipid peroxidation (MDA), SIRT1 activity, and the protein expression of SIRT1 and SIRT3 and ERS parameters (IRE1α, peIF2, caspase 12, and CHOP) were evaluated. Treatment with WY-14643 reduced liver injury in fatty livers, enhanced SIRT1 activity, and prevented ERS. Together, our results indicated that PPARα agonist WY-14643 may exert its protective effect in fatty livers, at least in part, via SIRT1 induction and ERS prevention.[3] 1. Background and classification: - WY-14643 (Pirinixic Acid) is a synthetic, selective agonist of PPARα, first developed as a tool compound to study the physiological functions of PPARα (a nuclear receptor regulating fatty acid oxidation, lipid metabolism, and anti-inflammatory responses) [1] - It is widely used in preclinical research to investigate PPARα-mediated effects in metabolic disorders (e.g., fatty liver) and inflammatory diseases (e.g., rheumatoid arthritis-related synovitis) [1,2,3] 2. Mechanism of action: - Anti-inflammatory effect: Activates PPARα to inhibit the NF-κB signaling pathway—suppresses phosphorylation of p65 and upregulates IκBα, thereby reducing the secretion of pro-inflammatory cytokines (TNF-α, IL-6) in LPS-induced synovial fibroblasts [2] - Hepatoprotective effect: Activates PPARα to induce SIRT1 activity in fatty liver I/R injury—SIRT1 promotes deacetylation of metabolic and stress-related proteins, reduces oxidative stress (decreases MDA, increases SOD), and alleviates hepatocyte necrosis [3] - PPARα-mediated metabolic regulation: Enhances the expression of PPARα downstream genes (e.g., acyl-CoA oxidase, carnitine palmitoyltransferase 1) to promote fatty acid β-oxidation, improving lipid metabolism disorders [1] 3. Research utility: - Research utility: Serves as a gold standard tool for validating PPARα-dependent biological processes, such as lipid metabolism regulation and anti-inflammatory responses [1] ; |
| 分子式 |
C14H14CLN3O2S
|
|
|---|---|---|
| 分子量 |
323.8
|
|
| 精确质量 |
323.049
|
|
| 元素分析 |
C, 51.93; H, 4.36; Cl, 10.95; N, 12.98; O, 9.88; S, 9.90
|
|
| CAS号 |
50892-23-4
|
|
| 相关CAS号 |
|
|
| PubChem CID |
5694
|
|
| 外观&性状 |
Typically exists as White to off-white solids at room temperature
|
|
| 密度 |
1.4±0.1 g/cm3
|
|
| 沸点 |
514.4±50.0 °C at 760 mmHg
|
|
| 熔点 |
155°C
|
|
| 闪点 |
264.9±30.1 °C
|
|
| 蒸汽压 |
0.0±1.4 mmHg at 25°C
|
|
| 折射率 |
1.658
|
|
| LogP |
4.92
|
|
| tPSA |
100.41
|
|
| 氢键供体(HBD)数目 |
2
|
|
| 氢键受体(HBA)数目 |
6
|
|
| 可旋转键数目(RBC) |
5
|
|
| 重原子数目 |
21
|
|
| 分子复杂度/Complexity |
361
|
|
| 定义原子立体中心数目 |
0
|
|
| SMILES |
ClC1C([H])=C(N=C(N=1)SC([H])([H])C(=O)O[H])N([H])C1=C([H])C([H])=C([H])C(C([H])([H])[H])=C1C([H])([H])[H]
|
|
| InChi Key |
SZRPDCCEHVWOJX-UHFFFAOYSA-N
|
|
| InChi Code |
InChI=1S/C14H14ClN3O2S/c1-8-4-3-5-10(9(8)2)16-12-6-11(15)17-14(18-12)21-7-13(19)20/h3-6H,7H2,1-2H3,(H,19,20)(H,16,17,18)
|
|
| 化学名 |
[[4-chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]-acetic acid
|
|
| 别名 |
|
|
| HS Tariff Code |
2934.99.9001
|
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
|
|||
|---|---|---|---|---|
| 溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.08 mg/mL (6.42 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.08 mg/mL (6.42 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.08 mg/mL (6.42 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 3.0883 mL | 15.4416 mL | 30.8833 mL | |
| 5 mM | 0.6177 mL | 3.0883 mL | 6.1767 mL | |
| 10 mM | 0.3088 mL | 1.5442 mL | 3.0883 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
|
|---|
|
|