Erlotinib HCl (OSI-744, Tarceva)

别名: NSC718781 HCl; NSC-718781 HCl; CP358774 HCl, NSC 718781 HCl; erlotinib HCl; Tarceva; N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine hydrochloride; OSI-774; OSI 774; Erlotinib (Hydrochloride); CP-358774 HCl; CP 358774 HCl; OSI-774 HCl; OSI 774 HCl; OSI774 HCl; Erlotinib hydrochloride 埃罗替尼盐酸盐; 伊诺替尼盐酸盐 ;N-(3-乙炔苯基)-[6,7-二(2-甲氧基乙氧基)]喹唑啉-4-胺盐酸盐; 盐酸埃罗替尼;埃罗替尼;埃罗替尼,伊诺替尼,厄洛替尼Erlotinib;厄洛替尼API;盐酸埃罗替尼 Erlotinib hydrochloride;盐酸埃罗替尼(伊诺替尼盐酸盐);盐酸埃索替尼;盐酸厄洛替尼;盐酸厄洛替尼(盐酸埃罗替尼);盐酸厄洛替尼A晶(非专利晶型);盐酸厄洛替尼标准品;盐酸盐埃罗替尼;厄洛替尼盐酸盐;盐酸埃罗替尼  盐酸厄罗替尼;罗替尼盐酸盐
目录号: V0533 纯度: ≥98%
厄洛替尼盐酸盐(原名OSI-744、OSI744;商品名:特罗凯)是厄洛替尼的盐酸盐,是一种具有抗肿瘤活性的EGFR(表皮生长因子受体)抑制剂。
Erlotinib HCl (OSI-744, Tarceva) CAS号: 183319-69-9
产品类别: EGFR
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
50mg
100mg
500mg
1g
2g
5g
10g
Other Sizes

Other Forms of Erlotinib HCl (OSI-744, Tarceva):

  • 厄洛替尼盐酸盐 D6
  • Desmethyl Erlotinib (Desmethyl Erlotinib; OSI-420 free base; CP-373420)
  • Desmethyl Erlotinib-d4
  • 4-Methyl erlotinib (Standard)
  • 4-Methyl erlotinib
  • Desmethyl Erlotinib-d4-1
  • 埃罗替尼
  • 甲磺酸厄洛替尼
  • Erlotinib-13C6 hydrochloride (CP-358774-13C6 hydrochloride; NSC 718781-13C6 hydrochloride; OSI-774-13C6 hydrochloride)
  • 埃罗替尼 d6
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
顾客使用InvivoChem 产品埃罗替尼盐酸盐发表1篇科研文献
纯度/质量控制文件

纯度: ≥98%

产品描述
厄洛替尼盐酸盐(原名OSI-744、OSI744;商品名:特罗凯)是厄洛替尼的盐酸盐,是一种具有抗肿瘤活性的EGFR(表皮生长因子受体)抑制剂。在无细胞测定中,它抑制 EGFR 的 IC50 为 2 nM,并且抑制 EGFR 的敏感性比人 c-Src 或 v-Abl 高 1000 倍以上。厄洛替尼是一种喹唑啉衍生物,已被FDA和其他国家批准用于治疗非小细胞肺癌(NSCLC)、胰腺癌和其他几种癌症。
生物活性&实验参考方法
靶点
EGFR (IC50 = 2 nM)
体外研究 (In Vitro)
体外活性:Erlotinib HCl 有效抑制完整细胞中的 EGFR 活化,包括 HNS 人头颈肿瘤细胞 (IC50 20nM)、DiFi 人结肠癌细胞和 MDA MB-468 人乳腺癌细胞。 Erlotinib HCl (1 μM) 诱导 DiFi 人结肠癌细胞凋亡。厄洛替尼抑制一组 NSCLC 细胞系的生长,包括 A549、H322、H3255、H358 H661、H1650、H1975、H1299、H596,IC50 范围为 29 nM 至 >20 μM。 Erlotinib HCl(2 μM) 显着抑制 AsPC-1 和 BxPC-3 胰腺细胞的生长。厄洛替尼盐酸盐与吉西他滨联合使用在 KRAS 突变的胰腺癌细胞中被认为具有累加效应。 10 微摩尔的 Erlotinib HCl 可抑制 EGFR Y845(Src 依赖性磷酸化)和 Y1068(自动磷酸化)位点的磷酸化。与厄洛替尼盐酸盐联合使用可以下调雷帕霉素刺激的 Akt 活性,并对细胞生长抑制产生协同作用。激酶测定:96 孔板在 37°C 下孵育过夜,每孔加入 100 μL 0.25 mg/mL PGT 的 PBS 溶液。通过抽吸除去过量的PGT,并用洗涤缓冲液(PBS中的0.1% Tween 20)洗涤板3次。激酶反应在 50 μL 50 mM HEPES (pH 7.3) 中进行,其中含有 125 mM 氯化钠、24 mM 氯化镁、0.1 mM 原钒酸钠、20 μM ATP、1.6 μg/mL EGF 和 15 ng EGFR,亲和力从A431细胞膜纯化。添加 DMSO 中的厄洛替尼 HCl,使 DMSO 最终浓度为 2.5%。通过添加 ATP 启动磷酸化,并在室温下持续摇动 8 分钟。通过抽吸反应混合物终止激酶反应并用洗涤缓冲液洗涤4次。通过每孔 50 μL HRP 偶联的 PY54 抗磷酸酪氨酸抗体孵育 25 分钟来测量磷酸化 PGT,该抗体在封闭缓冲液(PBS 中的 3% BSA 和 0.05% Tween 20)中稀释至 0.2 μg/mL。通过抽吸除去抗体,并用洗涤缓冲液洗涤板4次。通过添加 TMB Microwell 过氧化物酶底物(每孔 50 μL)来产生结肠测量信号,并通过添加 0.09 M 硫酸(每孔 50 μL)来终止。通过测量 450 nm 处的吸光度来估算磷酸酪氨酸。对照信号通常为 0.6-1.2 吸光度单位,在没有 AlP、EGFR 或 PGT 的孔中基本上没有背景,并且与 10 分钟的孵育时间成正比。细胞测定:将呈指数生长的细胞(A549、H322、H3255、H358 H661、H1650、H1975、H1299、H596 细胞)接种于 96 孔塑料板中,并暴露于埃罗替尼、培美曲塞或恒定浓度组合的连续稀释液中比例为 4:1,一式三份,持续 72 小时。通过细胞计数和 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物测定来测定细胞活力。生长抑制表示为药物处理的存活细胞与 PBS 处理的对照细胞的百分比(被认为是 100% 活力)。 IC50 值是与未处理的对照细胞相比,药物暴露 72 小时导致 50% 细胞生长抑制的浓度,并通过 CalcuSyn 软件计算。
表皮生长因子受体(EGFR)在很大比例的癌症中过表达,并导致恶性表型。CP-358774是一种直接作用的人EGFR酪氨酸激酶抑制剂,IC50为2 nM,可减少完整肿瘤细胞中的EGFR自磷酸化,IC50为20 nM。在分离激酶和全细胞的检测中,这种抑制对EGFR酪氨酸激酶的选择性高于我们检查过的其他酪氨酸激酶。在100mg/kg的剂量下,CP-358774完全阻止了EGF诱导的人HN5肿瘤中EGFR的自磷酸化,该肿瘤在无胸腺小鼠中作为异种移植物生长,并完全阻止了接受治疗的小鼠的肝EGFR自磷酸化。CP-358774在细胞培养物中以亚摩尔浓度抑制DiFi人结肠肿瘤细胞的增殖,并阻断G1期的细胞周期进程。这种抑制剂在DiFi细胞中产生低磷酸化形式的视网膜母细胞瘤蛋白的显著积累和p27KIP1的积累,这可能有助于细胞周期阻滞。根据DNA片段的形成和其他标准,抑制EGFR也会触发这些细胞的凋亡。这些结果表明,CP-358774具有治疗依赖EGFR途径增殖或存活的肿瘤的潜力。[1]
B-DIM和厄洛替尼对胰腺癌症细胞生存能力的影响[2]
值得注意的是,在我们的试点研究中,如材料和方法所示,使用了不同浓度的B-DIM和厄洛替尼,如表1所示。此外,在分析了EGFR、NF-κB和COX-2的基础表达水平后,我们选择了两种细胞系(BxPC-3),其NF-κB、EGFR和COX-2的表达水平为组成型激活水平,而NF-κA、EGFR和COX-2的表达水平较低(MIAPaCa)。我们的结果促使我们选择B-DIM和厄洛替尼的后续浓度,如下所示。用B-DIM(20µmol/L)、埃洛替尼(2µmol/L)和组合处理的BxPC-3和MIPaCa胰腺癌症细胞的细胞活力通过MTT测定进行测定,数据如图1A和B所示。在用任一药剂处理的Bx PC-3细胞中观察到细胞活力的显著抑制,联合处理进一步增强了细胞活力(P=0.0001)。此外,我们还通过克隆形成试验测试了治疗对细胞存活率的影响,如下所示。MIAPaCa细胞的类似处理导致单独使用B-DIM显著抑制活细胞,但当同时暴露于类似浓度的B-DIM和厄洛替尼时则没有,联合治疗没有增强这种效果(P=0.0890)。MIAPaCa细胞对厄洛替尼的不敏感性与最近发表的一份报告一致
克隆形成试验抑制细胞生长/存活[2]
为了确定B-DIM和厄洛替尼对细胞生长的影响,用每种单一药物或其组合处理细胞,并通过克隆形成试验评估细胞存活率。与单独使用任何一种药物相比,B-DIM和厄洛替尼的组合显著抑制了BxPC-3细胞中的集落形成(图2A和B)。MIAPaCa细胞的类似处理(图2C)显示,单独使用B-DIM和联合使用都能抑制集落形成,但联合使用并不能增强这种效果,如BxPC-3细胞所示(图2A和B)。这些结果与软琼脂试验获得的结果相似。总的来说,克隆发生测定的结果与MTT数据一致,如图1A和B所示,表明B-DIM在BxPC-3和MIPaCa胰腺癌症细胞之间具有不同的作用。这些差异的机制得到了进一步的研究,结果将在以下部分呈现,但首先我们确定了B-DIM、厄洛替尼和联合用药对凋亡细胞死亡的影响。
厄洛替尼、B-DIM和联合用药诱导细胞凋亡[2]
通过使用细胞死亡检测ELISA确定不同处理的凋亡效应,进一步研究了抑制细胞存活的潜在机制。与单独使用任何一种药物的凋亡作用相比,B-DIM和厄洛替尼的组合仅在BxPC-3细胞中显著诱导了凋亡(图1C)。对MIAPaCa细胞的类似处理显示,联合用药没有诱导细胞凋亡(图1D)。这些结果与MTT法的细胞存活率测定结果一致。随后,我们试图找到进一步的凋亡证据,如下所述。
B-DIM通过厄洛替尼增强细胞凋亡信号传导[2]
在用B-DIM(20µmol/L)、厄洛替尼(2µmol/L)和组合处理的BxPC-3和MIAPaCa细胞中测定了PARP切割(图3)。我们仅在BxPC-3细胞中发现了72小时处理后大量PARP(116 kDa)蛋白切割产物(85 kDa片段)(图3)。相比之下,经类似处理的MIAPaCa细胞仅显示出单独使用B-DIM和联合使用但不单独使用厄洛替尼对PARP的小切割。凋亡的诱导可能部分是由于重要存活基因的失活;因此,我们研究了B-DIM、厄洛替尼及其组合是否会影响关键的生存蛋白。
B-DIM对凋亡相关分子的影响[2]
使用BxPC-3和MIAPaCa细胞来评估B-DIM和/或厄洛替尼对存活素、Bcl-2、Bcl-xL和c-IAP1/2表达的影响。与单独使用任何一种药物相比,联合治疗的细胞中Bcl-2、Bcl-xL、survivin和c-IAP1/2蛋白的表达显著降低(图3)。单独或联合用药对MIAPaCa细胞中的抗凋亡蛋白没有影响。这些结果表明,B-DIM、厄洛替尼及其组合下调了关键存活蛋白,进而诱导BxPC-3细胞凋亡,但在MIAPaCa细胞中没有。为了进一步确定B-DIM致敏BxPC-3细胞对厄洛替尼诱导的细胞活力抑制和凋亡诱导的分子机制,我们研究了EGFR及其下游信号通路的作用。
B-DIM对EGFR蛋白表达的影响[2]
通过免疫印迹法测定EGFR的表达。在MIAPaCa细胞中未发现EGFR的基线表达。与单独使用任何一种药物相比,当暴露于厄洛替尼联合B-DIM时,表达EGFR的BxPC-3细胞显示出EGFR表达和磷酸化EGFR水平的显著降低(图3)。众所周知,EGFR的激活反过来可以调节一种重要的转录因子NF-κB,它是存活素、c-IAP1/2、Bcl-2和Bcl-xL等几种生存基因的已知调节因子。因为我们发现与单独使用B-DIM和厄洛替尼相比,BxPC-3细胞中survivin、c-IAP1/2、Bcl-2和Bcl-xL的下调程度更大,而且这些基因受NF-κB的转录调节,所以我们研究了每种处理对NF-κB DNA结合活性的影响。
B-DIM抑制NF-κBDNA结合活性[2]
在B-DIM处理和厄洛替尼处理的细胞中评估核转录因子NF-κB的激活。与单独使用埃罗替尼相比,暴露于埃罗替尼和B-DIM的BxPC-3细胞中NF-κB活化受到显著抑制(图4A)。MIAPaCa细胞中没有显示出这种抑制作用(图4B)。这些结果表明,B-DIM和厄洛替尼的组合对细胞生长、凋亡诱导、存活因子抑制、EGFR抑制和NF-κB失活有更大的抑制作用。
由于NF-κB在促生存和抗凋亡过程的调节中起着重要作用,我们测试了p65 cDNA转染NF-κB的过表达是否可以消除B-DIM诱导和厄洛替尼诱导的凋亡过程。此外,众所周知,NF-κB转录调节COX-2,COX-2产生PGE2,进而诱导细胞存活。因此,我们测试了塞来昔布、厄洛替尼或单独的B-DIM是否会影响p65 cDNA转染细胞中B-DIM和厄洛替尼的活性。
厄洛替尼、B-DIM和塞来昔布阻断p65 cDNA转染刺激的NF-κB活性的激活[2]
用p65 cDNA转染BxPC-3和MIAPaCa细胞,然后用厄洛替尼(2µmol/L)、B-DIM(20µmol/L)或塞来昔布(5µmol/L)处理或未处理48小时,对其细胞质和核蛋白进行NF-κB活性分析,通过蛋白质印迹分析和EMSA进行测量。结果显示,与未处理的细胞相比,厄洛替尼、B-DIM和塞来昔布对BxPC-3细胞中p65蛋白和NF-κB DNA结合活性的抑制作用更大(图5A和B),对MIAPaCa细胞的影响很小。重要的是,如图5A和B所示,NF-κB p65 cDNA转染仅在BxPC-3细胞中显著增强了NF-κBp65蛋白和DNA结合活性。另一方面,在MIAPaCa细胞中没有观察到这种变化。由于NF-κB的激活诱导COX-2表达,导致PGE2产生并释放到培养基中,我们测量了用埃罗替尼、B-DIM和COX-2抑制剂塞来昔布处理的未转染和转染细胞中PGE2的水平。
p65 cDNA转染细胞中PGE2合成的抑制[2]
我们测量了从BxPC-3和MIAPaCa细胞收集的条件培养基中PGE2的水平,作为COX-2活性的指标。我们发现BxPC-3细胞分泌高水平的PGE2,而MIAPaCa细胞显示出非常低的PGE2水平,这与COX-2的低组成性表达是一致的。用p65cDNA转染BxPC-3和MIAPaCa细胞,然后用厄洛替尼(10nmol/L)、B-DIM(1µmol/L)或塞来昔布(1nmol/L)处理,以分析释放到培养基中的PGE2水平(图5C)。单独用厄洛替尼处理细胞时,PGE2水平没有变化(P=0.084)。然而,在用B-DIM(P=0.006)和塞来昔布(P=0.005)处理的BxPC-3细胞中观察到PGE2水平显著降低。与未转染的细胞相比,p65 cDNA转染的BxPC-3细胞中PGE2水平显著升高(P=0.009),表明NF-κB可以诱导COX-2表达。然而,使用任何药物后,MIAPaCa细胞中的PGE2水平都没有变化。总的来说,这些结果表明PGE2的产生是通过NF-κB和COX-2途径介导的,塞来昔布可以下调NF-κB和COX-2。这些结果随后与凋亡程度相关(图5D),如下所示。
p65 cDNA转染细胞中NF-κB失活导致的细胞凋亡[1]
将p65 cDNA转染到BxPC-3和MIAPaCa细胞中,然后用厄洛替尼(2µmol/L)、B-DIM(20µmol/L)或塞来昔布(5µmol/L)处理48小时(图5D)。用厄洛替尼处理的p65 cDNA转染的BxPC-3细胞的凋亡程度(P=0.034)远低于用厄洛替尼处理的未转染细胞(P=0.007)。在BxPC-3细胞中,B-DIM和塞来昔布治疗均观察到类似的结果。然而,在MIAPaCa细胞中,没有观察到这种程度的凋亡。这些结果表明,p65 cDNA转染激活NF-κB可以消除厄洛替尼、B-DIM和塞来昔布的凋亡诱导作用。
体内研究 (In Vivo)
在 100 mg/kg 的剂量下,Erlotinib HCl 完全阻止 EGF 诱导的人类 HN5 肿瘤中 EGFR 的自磷酸化,该肿瘤作为无胸腺小鼠的异种移植物以及治疗小鼠的肝脏 EGFR 的自磷酸化。 Erlotinib HCl (100 mg/Kg) 抑制 H460a 和 A549 肿瘤模型,抑制率分别为 71% 和 93%。
B-DIM增强厄洛替尼对原发性肿瘤的体内治疗效果[2]
研究了B-DIM和厄洛替尼组合在携带原位植入BxPC-3胰腺肿瘤细胞的SCID小鼠中的潜在治疗效用。选择每只小鼠口服3.5mg/d的B-DIM剂量,而厄洛替尼剂量(腹腔注射50mg/kg体重)基于之前发表的报告,如图6A所示。共28只小鼠分为四组。为了确定单一药物治疗与联合治疗的疗效,我们确定了所有治疗组的平均胰腺重量。在我们的实验条件下,与对照组肿瘤相比,通过强饲治疗和单独使用厄洛替尼给予B-DIM分别使肿瘤重量减轻了20%和35%(图6C)。然而,在实验条件下,与未经治疗的对照组、单独使用B-DIM或单独使用厄洛替尼治疗组相比,B-DIM和厄洛替尼联用治疗组的肿瘤重量显著降低(P<0.01)。这些结果首次表明,在原位模型中,B-DIM和厄洛替尼联合使用抑制胰腺肿瘤生长的疗效。
B-DIM在体内抑制NF-κBDNA结合活性[2]
在B-DIM治疗和厄洛替尼治疗的肿瘤组织中评估NF-κB的激活。结果表明,B-DIM和厄洛替尼下调了NF-κB(图6B)。图6B(底部)显示了所有七只小鼠的结果。这些体内结果与我们的体外发现相似,表明NF-κB的失活至少是B-DIM在我们的实验动物模型中增强厄洛替尼诱导的抗肿瘤活性的分子机制之一。
阻断表皮生长因子受体(EGFR)在急性肾损伤(AKI)中的作用存在争议。在这里,我们研究了厄洛替尼(一种可以阻断EGFR活性的选择性酪氨酸激酶抑制剂)对顺铂(CP)诱导的急性肾损伤的肾脏保护作用。从诱导CP肾毒性(CP-N)的前一天到第3天,给各组动物服用厄洛替尼或赋形剂。此外,我们使用人肾近端肾小管细胞(HK-2)分析了厄洛替尼对CP-N相关信号通路的影响。与对照组相比,厄洛替尼治疗的大鼠肾功能明显改善,肾小管间质损伤减轻,凋亡和增殖细胞数量减少。厄洛替尼治疗的大鼠肾皮质促纤维化基因的mRNA显著减少。厄洛替尼治疗显著降低了Bax/Bcl-2 mRNA和蛋白比值。在体外,我们观察到厄洛替尼显著降低了HK-2中CP诱导的MEK1和Akt的磷酸化过程。综上所述,这些数据表明厄洛替尼具有肾脏保护特性,这可能是通过减少肾小管细胞的凋亡和增殖来介导的,这些作用反映了对EGFR下游信号通路的抑制。这些结果表明,厄洛替尼可能有助于预防接受CP化疗的患者发生急性肾损伤[PLoS One. 2014 Nov 12;9(11):e111728.]。
酶活实验
包被 96 孔板的过程包括每孔加入 100 μL 0.25 mg/mL PGT 的 PBS 溶液,在 37 °C 下孵育一整夜。使用抽吸去除多余的 PGT,并对板进行 3 次洗涤缓冲液洗涤(PBS 中的 0.1% Tween 20)。使用 50 μL 50 mM HEPES (pH 7.3),其中含有 0.1 mM 原钒酸钠、125 mM 氯化钠、24 mM 氯化镁、20 μM ATP、1.6 μg/mL EGF 和来自 A431 细胞膜的 15 ng 亲和纯化的 EGFR用于激酶反应。通过在 DMSO 中添加盐酸厄洛替尼可达到 2.5% 的最终 DMSO 浓度。添加 ATP 后,磷酸化开始,并在室温下持续振荡八分钟。通过抽吸反应混合物终止激酶反应,并用洗涤缓冲液洗涤 4 次。通过每孔 50 μL HRP 偶联的 PY54 抗磷酸酪氨酸抗体孵育 25 分钟来测量磷酸化 PGT,该抗体在封闭缓冲液(PBS 中的 3% BSA 和 0.05% Tween 20)中稀释至 0.2 μg/mL。通过抽吸除去抗体,并用洗涤缓冲液洗涤板4次。通过添加 TMB Microwell 过氧化物酶底物(每孔 50 μL)来产生结肠测量信号,并通过添加 0.09 M 硫酸(每孔 50 μL)来终止。通过测量 450 nm 处的吸光度来估算磷酸酪氨酸。在没有 AlP、EGFR 或 PGT 的孔中,对照信号通常在 0.6 至 1.2 吸光度单位之间,几乎没有背景,并且与 10 分钟的孵育时间成正比。
细胞实验
将一式三份的、呈指数生长的细胞接种到厄洛替尼、培美曲塞或以 4:1 恒定浓度比连续稀释的组合中 72 小时。使用细胞计数和 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物测定来测量细胞活力。与 PBS 处理的对照细胞(被认为 100% 存活)相比,经药物处理的对照细胞存活的百分比称为生长抑制。 CalcuSyn 软件确定 IC50 值,即与未处理的对照细胞相比,药物暴露 72 小时导致细胞生长抑制 50% 的浓度。
为了评估用 B-DIM、厄洛替尼或两者处理的细胞的存活率,将 3,000–5,000 个 BxPC-3 和 MIAPaCa 细胞接种到 96 孔板的每孔中,并在 37°C 下孵育整夜。最初,在一系列浓度下测试 B-DIM (10-50 µM) 和厄洛替尼 (1-5 µM)。根据初步结果为每次检测选择 B-DIM (20 µM) 和厄洛替尼 (2 µM) 的浓度。标准 MTT 测定用于测量 B-DIM (20 µM)、厄洛替尼 (2 µM) 及其组合对 BxPC-3 和 MIAPaCa 细胞的影响。 72小时后进行3次测定。 Tecan 微孔板荧光计测量 595 nm 处的颜色强度。用 DMSO 处理的细胞的值为 100%,并被视为未处理的对照。除了上述测定之外,我们还进行了克隆形成测定来评估治疗效果[2]。
细胞活力测定[2]
为了测试用B-DIM、厄洛替尼或其组合处理的细胞的存活率,将BxPC-3和MIAPaCa细胞(每孔3000-5000个)铺在96孔板中,并在37°C下孵育过夜。我们最初测试了B-DIM(10-50µmol/L)和埃罗替尼(1-5µmol/L)的一系列浓度。根据初步结果,所有测定均选择B-DIM(20µmol/L)和埃罗替尼(2µmol/L)的浓度。72小时后,通过标准3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四唑(MTT)法测定B-DIM(20µmol/L)、埃罗替尼(2µmol/L)和联合用药对BxPC-3和MIAPaCa细胞的影响,并重复三次。通过帝肯微孔板荧光计在595nm下测量颜色强度。DMSO处理的细胞被认为是未处理的对照,并被赋予100%的值。除上述检测外,我们还进行了克隆形成检测,以评估治疗效果,如下所示。
克隆形成试验[2]
为了测试用B-DIM、厄洛替尼或其组合处理的细胞的存活率,将BxPC-3和MIAPaCa细胞(每孔50000-100000)铺在六孔板中,并在37°C下孵育过夜。在暴露于20µmol/L B-DIM、2µmol/L厄洛替尼和组合72小时后,对细胞进行胰蛋白酶处理,计数活细胞(台盼蓝排除),并在100至1000个细胞的100 mm培养皿中平板培养,以确定平板效率并评估处理对克隆存活的影响。然后将细胞在37°C的5%CO2/5%O2/90%N2培养箱中培养约10至12天。菌落用2%结晶紫染色并计数。存活分数在克隆形成效率方面与未经处理的对照细胞标准化,BxPC-3和MIAPaCa细胞的克隆形成效率均为83%。除此试验外,还对细胞进行了类似的处理,将其铺在软琼脂中(软琼脂集落试验),并在37°C下孵育。12天后,还对所有未处理和处理过的孔中的软琼脂菌落进行了计数。
ELISA定量细胞凋亡[2]
细胞死亡检测ELISA试剂盒(罗氏应用科学公司)用于检测未处理和处理的BxPC-3和MIAPaCa细胞的凋亡。接种在六孔板中的细胞用B-DIM(20µmol/L)、厄洛替尼(2µmol/L)或其组合处理。细胞被胰蛋白酶消化,如前所述,使用了约10000个细胞。使用帝肯微孔板荧光计测量405nm处的颜色强度。这个实验重复了三次。
蛋白质提取和蛋白质印迹分析[2]
用B-DIM(20µmol/L)、厄洛替尼(2µmol/L)或联合治疗72小时的BxPC-3和MIAPaCa细胞用于评估治疗对存活素、Bcl-2、Bcl-xL、EGFR、EGFR-pTyr1173、c-IAP1/2、Src、聚ADP核糖聚合酶(PARP)和β-actin表达的影响。实验至少进行了三次。如前所述收获细胞。将样品装载在7%至12%的SDS-PAGE上进行分离,并电泳转移到硝化纤维膜上。每层膜都与抗survivin、Bcl-2、Bcl-xL、Src、c-IAP1/2、EGFR、EGFR-pTyr1173、PARP和β-actin的单克隆抗体一起孵育。印迹与过氧化物酶偶联的二抗一起孵育。然后使用化学发光检测系统测量信号强度。
NF-κB活化的电泳迁移率变化分析[2]
为了评估B-DIM和厄洛替尼对BxPC-3和MIAPaCa细胞的影响,细胞要么未经处理,要么用B-DIM(20µmol/L)、厄洛替宁(2µmol/L)或组合处理,至少重复实验三次,持续72小时。如前所述,使用Dounce均质器在400µL冰冷的裂解缓冲液中均质化细胞或切碎的肿瘤组织。
动物实验
Mice: Erlotinib (5 mg/kg) is administered p.o. or i.p. to Bcrp1/Mdr1a/1b-/- and WT mice. The selection of i.p. administration is predicated on full bioavailability and optimal drug absorption. Three series of samples are taken from the lateral tail vein tip. Whole blood samples are taken during the first series at 15, min, 0.5, 1.5, 5, and 10 h following injection. The sampling times of the two subsequent series are adjusted to 5 and 15 minutes and 0.5, 1.5, 4, and 8 hours after injection based on the findings of this initial group. Blood samples are collected, centrifuged right away, and the plasma is kept at -20°C until high-performance liquid chromatographic analysis is performed.
Rats: There are male Crl:CD (SD) rats (244-297 g) that are seven weeks old. Erlotinib hydrochloride (10 mg/kg and 20 mg/kg) is given orally to the animals by gavage.
Mice: The treatment groups consist of seven randomly assigned female ICR-SCID mice, aged 6-7 weeks: (a) control (no treatment); (b) B-DIM (50 mg/kg body weight) administered intragastrically once daily; (c) Erlotinib (50 mg/kg body weight) administered daily intraperitoneally for 15 days; and (d) B-DIM and Erlotinib administered according to the schedule for individual treatments. After receiving their last dose of medication, all mice are killed on day three, and their body weight is recorded. A portion of the tissue is immediately frozen in liquid nitrogen and kept cold (−70°C) for later use, while the remaining portion is fixed in formalin and prepared for paraffin block processing. The presence of a tumor or tumors in each pancreas is verified by staining a fixed tissue section with H&E.
Rats: Male Sprague-Dawley (SD) rats six weeks of age, weighing 180–210 g, are utilized. On day 0, SD rats (n=28) receive an intraperitoneal injection of 7 mg/kg of freshly prepared ciprofloxacin (CP) at a concentration of 1 mg/mL. For the purpose of examining Erlotinib's effects, 28 CP-N rats are split into two groups. Animals in two groups (n = 14) are given daily oral gavages of either Erlotinib (20 mg/kg) (CP+E, n = 14) or vehicle (CP+V, n = 14) from day -1 (24 hours before the CP injection) to day 3. Groups treated with vehicles are given the same amount of saline. At six weeks of age, a normal control group (NC, n = 5) consists of five male SD rats. From the first to the third day, the NC rats receive an equivalent volume of saline orally via gavage. Day 4 (96 hours post-CP injection): rats are anesthetized, and following a cardiac puncture, they are sacrificed by exsanguination. The kidneys and blood are simultaneously extracted. Renal tissue is sectioned and fixed in 2% paraformaldehyde/phosphate-buffered saline (PBS) for later use, or it can be snap-frozen in liquid nitrogen. In order to reduce suffering as much as possible, diethyl ether gas anesthesia is used during all surgical procedures.
Mice were randomized into the following treatment groups (n = 7): (a) untreated control; (b) only B-DIM (50 mg/kg body weight), intragastric once every day; (c) Erlotinib (50 mg/kg body weight), everyday i.p. for 15 days; and (d) B-DIM and Erlotinib, following schedule as for individual treatments. All mice were killed on day 3 following last dose of treatment, and their body weight was determined. One part of the tissue was rapidly frozen in liquid nitrogen and stored at −70°C for future use and the other part was fixed in formalin and processed for paraffin block. H&E staining of fixed tissue section was used to confirm the presence of tumor(s) in each pancreas. [2]
Cisplatin (CP) was freshly prepared in saline at a concentration of 1 mg ml−1 and then injected intraperitoneally in SD rats (n = 28) at a dose of 7 mg/kg on day 0. The dose of CP was selected based on a previous stud. To investigate the effect of Erlotinib, 28 CP-N rats were divided into two groups. Separate groups (n = 14) each of animals were administered with either Erlotinib (20 mg/kg, Cugai Pharmaceutical/F. Hoffmann-La Roche, Basel, Switzerland) (CP+E, n = 14) or vehicle (CP+V, n = 14) daily by oral gavage from day -1 (24 hours prior to the CP injection) to day 3. Vehicle-treated groups received an equivalent volume of saline. Five male SD rats at the age of 6 weeks were used as a normal control group (NC, n = 5). The NC rats were given an equivalent volume of saline daily by oral gavage from day -1 to day 3. At day 4 (96 hours after CP injection), each rat was anesthetized and sacrificed by exsanguination after the cardiac puncture; blood was collected by cardiac puncture and kidneys were collected (Figure 1). Renal tissue was divided; separate portions were snap-frozen in liquid nitrogen or fixed in 2% paraformaldehyde/phosphate-buffered saline (PBS) for later use. All surgery was performed under diethyl ether gas anesthesia, and all efforts were made to minimize suffering.
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Erlotinib is about 60% absorbed after oral administration and its bioavailability is substantially increased by food to almost 100%. Peak plasma levels occur 4 hours after dosing. The solubility of erlotinib is pH dependent. Solubility decreases pH increases. Smoking also decrease the exposure of erlotinib.
Following a 100 mg oral dose, 91% of the dose was recovered in which 83% was in feces (1% of the dose as unchanged parent compound) and 8% in urine (0.3% of the dose as unchanged parent compound).
Apparent volume of distribution = 232 L
Smokers have a 24% higher rate of erlotinib clearance.
Erlotinib is about 60% absorbed after oral administration and its bioavailability is substantially increased by food to almost 100%. Peak plasma levels occur 4 hours after dosing. The solubility of erlotinib is pH dependent. Erlotinib solubility decreases as pH increases.
Following absorption, erlotinib is approximately 93% protein bound to plasma albumin and alpha-1 acid glycoprotein. Erlotinib has an apparent volume of distribution of 232 liters.
Time to reach steady state plasma concentration /is/ 7 - 8 days. No significant relationships of clearance to covariates of patient age, body weight or gender were observed. Smokers had a 24% higher rate of erlotinib clearance.
Following a 100 mg oral dose, 91% of the dose was recovered: 83% in feces (1% of the dose as intact parent) and 8% in urine (0.3% of the dose as intact parent).
For more Absorption, Distribution and Excretion (Complete) data for Erlotinib (10 total), please visit the HSDB record page.
Metabolism / Metabolites
Metabolism occurs in the liver. In vitro assays of cytochrome P450 metabolism showed that erlotinib is metabolized primarily by CYP3A4 and to a lesser extent by CYP1A2, and the extrahepatic isoform CYP1A1.
Metabolism and excretion of erlotinib, an orally active inhibitor of epidermal growth factor receptor tyrosine kinase, were studied in healthy male volunteers after a single oral dose of (14)C-erlotinib hydrochloride (100-mg free base equivalent, approximately 91 microCi/subject)... In plasma, unchanged erlotinib represented the major circulating component, with the pharmacologically active metabolite M14 accounting for approximately 5% of the total circulating radioactivity. Three major biotransformation pathways of erlotinib are O-demethylation of the side chains followed by oxidation to a carboxylic acid, M11 (29.4% of dose); oxidation of the acetylene moiety to a carboxylic acid, M6 (21.0%); and hydroxylation of the aromatic ring to M16 (9.6%). In addition, O-demethylation of M6 to M2, O-demethylation of the side chains to M13 and M14, and conjugation of the oxidative metabolites with glucuronic acid (M3, M8, and M18) and sulfuric acid (M9) play a minor role in the metabolism of erlotinib. The identified metabolites accounted for >90% of the total radioactivity recovered in urine and feces. The metabolites observed in humans were similar to those found in the toxicity species, rats and dogs.
Erlotinib has known human metabolites that include Erlotinib M14.
Biological Half-Life
Median half-life of 36.2 hours.
A population pharmacokinetic analysis in 591 patients receiving the single-agent erlotinib hydrochloride 2nd/3rd line regimen showed a median half-life of 36.2 hours.
毒性/毒理 (Toxicokinetics/TK)
Hepatotoxicity
Elevations in serum aminotransferase levels are common during erlotinib therapy of pancreatic and lung cancers, and values above 5 times the upper limit of normal occur in at least 10% of patients. Similar rates of ALT elevations, however, can occur with comparable antineoplastic regimens. The abnormalities are usually asymptomatic and self-limited, but may require dose adjustment or discontinuation (Case 1). In addition, there have been rare reports of clinically apparent liver injury attributed to erlotinib therapy. The time to onset is typically within days or weeks of starting therapy, and the liver injury can be severe, there being at least a dozen fatal instances reported in the literature. The onset of injury can be abrupt and the pattern of serum enzyme elevations is usually hepatocellular (Case 2). Immunoallergic features (rash, fever and eosinophilia) are not common and autoantibody formation has not been reported. Routine monitoring of liver tests during therapy is recommended. The rate of clinically significant liver injury and hepatic failure is increased in patients with preexisting cirrhosis or hepatic impairment due to liver tumor burden.
Likelihood score: B (likely but uncommon cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the clinical use of erlotinib during breastfeeding. Because erlotinib is 93% bound to plasma proteins, the amount in milk is likely to be low. However, its half-life is about 36 hours and it might accumulate in the infant. It is also given in combination with gemcitabine for pancreatic cancer, which may increase the risk to the infant. The manufacturer recommends that breastfeeding be discontinued during erlotinib therapy and for 2 weeks after the final dose.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
93% protein bound to albumin and alpha-1 acid glycoprotein (AAG)
参考文献

[1]. Cancer Res. 1997 Nov 1;57(21):4838-48.

[2]. Mol Cancer Ther. 2008 Jun;7(6):1708-19.

[3]. Clin Cancer Res. 2007 Jun 1;13(11):3413-22.

[4]. Mol Cancer Ther. 2006 Nov;5(11):2676-84.

[5]. Anticancer Drugs. 2004 Jun;15(5):503-12.

[6]. Mol Cancer Ther. 2006 Nov;5(11):2676-84

[7]. Neuroendocrinology. 2012;96(3):228-37.

其他信息
Erlotinib Hydrochloride is the hydrochloride salt of a quinazoline derivative with antineoplastic properties. Competing with adenosine triphosphate, erlotinib reversibly binds to the intracellular catalytic domain of epidermal growth factor receptor (EGFR) tyrosine kinase, thereby reversibly inhibiting EGFR phosphorylation and blocking the signal transduction events and tumorigenic effects associated with EGFR activation.
A quinazoline derivative and ANTINEOPLASTIC AGENT that functions as a PROTEIN KINASE INHIBITOR for EGFR associated tyrosine kinase. It is used in the treatment of NON-SMALL CELL LUNG CANCER.
See also: Erlotinib (has active moiety).
Drug Indication
Non-small cell lung cancer (NSCLC)Tarceva is also indicated for switch maintenance treatment in patients with locally advanced or metastatic non-small cell lung cancer with EGFR activating mutations and stable disease after first-line chemotherapy. Tarceva is also indicated for the treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of at least one prior chemotherapy regimen. In patients with tumours without EGFR activating mutations, Tarceva is indicated when other treatment options are not considered suitable. When prescribing Tarceva, factors associated with prolonged survival should be taken into account. No survival benefit or other clinically relevant effects of the treatment have been demonstrated in patients with Epidermal Growth Factor Receptor (EGFR)-IHC - negative tumours. Pancreatic cancer Tarceva in combination with gemcitabine is indicated for the treatment of patients with metastatic pancreatic cancer . When prescribing Tarceva, factors associated with prolonged survival should be taken into account.
The epidermal growth factor receptor (EGFR) is overexpressed in a significant percentage of carcinomas and contributes to the malignant phenotype. CP-358,774 is a directly acting inhibitor of human EGFR tyrosine kinase with an IC50 of 2 nM and reduces EGFR autophosphorylation in intact tumor cells with an IC50 of 20 nM. This inhibition is selective for EGFR tyrosine kinase relative to other tyrosine kinases we have examined, both in assays of isolated kinases and whole cells. At doses of 100 mg/kg, CP-358,774 completely prevents EGF-induced autophosphorylation of EGFR in human HN5 tumors growing as xenografts in athymic mice and of the hepatic EGFR of the treated mice. CP-358,774 inhibits the proliferation of DiFi human colon tumor cells at submicromolar concentrations in cell culture and blocks cell cycle progression at the G1 phase. This inhibitor produces a marked accumulation of retinoblastoma protein in its underphosphorylated form and accumulation of p27KIP1 in DiFi cells, which may contribute to the cell cycle block. Inhibition of the EGFR also triggers apoptosis in these cells as determined by formation of DNA fragments and other criteria. These results indicate that CP-358,774 has potential for the treatment of tumors that are dependent on the EGFR pathway for proliferation or survival.[1]
Purpose: This study was undertaken to select the optimal combination schedule of erlotinib and pemetrexed for the treatment of relapsed non-small cell lung cancer (NSCLC) using a panel of human NSCLC lines. Experimental design: Human NSCLC cell lines, with variable expression of the known molecular determinants of erlotinib sensitivity, were exposed to pemetrexed and erlotinib using different schedules. Antitumor effect was measured by growth inhibition by cell count and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell cycle distribution and apoptosis by flow cytometry, and expression of cell cycle mediators by immunoblots. The cytotoxic interaction between pemetrexed and erlotinib (i.e., synergistic, additive, or antagonistic) was determined by median effect analysis. Results: When cells were exposed to concurrent pemetrexed and erlotinib or sequential pemetrexed followed by erlotinib, cytotoxic synergism was observed in both erlotinib-sensitive and erlotinib-resistant human NSCLC cell lines. This was independent of the mutation status of epidermal growth factor receptor or K-Ras genes. Synergism was associated with a combination of cell cycle effects from both agents. In contrast, exposure of cells to erlotinib followed by pemetrexed was mostly antagonistic in erlotinib-sensitive cells and additive at best in erlotinib-resistant cells. Antagonism was associated with erlotinib-induced G(1)-phase blockade of erlotinib-sensitive cells, which protects cells from pemetrexed cytotoxicity. Pemetrexed induced an epidermal growth factor receptor-mediated activation of the phosphatidylinositol 3-kinase/AKT pathway, which was inhibited by erlotinib and a specific phosphatidylinositol 3-kinase inhibitor, LY294002. Conclusions: The combination of pemetrexed and erlotinib is synergistic in NSCLC in vitro if exposure to erlotinib before pemetrexed is avoided, particularly in tumors that are sensitive to erlotinib. Based on these findings, a randomized phase II study comparing the progression-free survival between an intermittent combination of erlotinib and pemetrexed (experimental arm) and pemetrexed alone (control arm) in patients with relapsing NSCLC has been initiated.[2]
Purpose: This study was undertaken to select the optimal combination schedule of erlotinib and pemetrexed for the treatment of relapsed non-small cell lung cancer (NSCLC) using a panel of human NSCLC lines. Experimental design: Human NSCLC cell lines, with variable expression of the known molecular determinants of erlotinib sensitivity, were exposed to pemetrexed and erlotinib using different schedules. Antitumor effect was measured by growth inhibition by cell count and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell cycle distribution and apoptosis by flow cytometry, and expression of cell cycle mediators by immunoblots. The cytotoxic interaction between pemetrexed and erlotinib (i.e., synergistic, additive, or antagonistic) was determined by median effect analysis. Results: When cells were exposed to concurrent pemetrexed and erlotinib or sequential pemetrexed followed by erlotinib, cytotoxic synergism was observed in both erlotinib-sensitive and erlotinib-resistant human NSCLC cell lines. This was independent of the mutation status of epidermal growth factor receptor or K-Ras genes. Synergism was associated with a combination of cell cycle effects from both agents. In contrast, exposure of cells to erlotinib followed by pemetrexed was mostly antagonistic in erlotinib-sensitive cells and additive at best in erlotinib-resistant cells. Antagonism was associated with erlotinib-induced G(1)-phase blockade of erlotinib-sensitive cells, which protects cells from pemetrexed cytotoxicity. Pemetrexed induced an epidermal growth factor receptor-mediated activation of the phosphatidylinositol 3-kinase/AKT pathway, which was inhibited by erlotinib and a specific phosphatidylinositol 3-kinase inhibitor, LY294002. Conclusions: The combination of pemetrexed and erlotinib is synergistic in NSCLC in vitro if exposure to erlotinib before pemetrexed is avoided, particularly in tumors that are sensitive to erlotinib. Based on these findings, a randomized phase II study comparing the progression-free survival between an intermittent combination of erlotinib and pemetrexed (experimental arm) and pemetrexed alone (control arm) in patients with relapsing NSCLC has been initiated.[3]
The receptor for epidermal growth factor (EGFR) is overexpressed in many cancers. One important signaling pathway regulated by EGFR is the phosphatidylinositol 3'-kinase (PI3K)-phosphoinositide-dependent kinase 1-Akt pathway. Activation of Akt leads to the stimulation of antiapoptotic pathways, promoting cell survival. Akt also regulates the mammalian target of rapamycin (mTOR)-S6K-S6 pathway to control cell growth in response to growth factors and nutrients. Recent reports have shown that the sensitivity of non-small-cell lung cancer cell lines to EGFR inhibitors such as erlotinib (Tarceva, OSI Pharmaceuticals) is dependent on inhibition of the phosphatidylinositol 3'-kinase-phosphoinositide-dependent kinase 1-Akt-mTOR pathway. There can be multiple inputs to this pathway as activity can be regulated by other receptors or upstream mutations. Therefore, inhibiting EGFR alone may not be sufficient for substantial inhibition of all tumor cells, highlighting the need for multipoint intervention. Herein, we sought to determine if rapamycin, an inhibitor of mTOR, could enhance erlotinib sensitivity for cell lines derived from a variety of tissue types (non-small-cell lung, pancreatic, colon, and breast). Erlotinib could inhibit extracellular signal-regulated kinase, Akt, and S6 only in cell lines that were the most sensitive. Rapamycin could fully inhibit S6 in all cell lines, but this was accompanied by activation of Akt phosphorylation. However, combination with erlotinib could down-modulate rapamycin-stimulated Akt activity. Therefore, in select cell lines, inhibition of both S6 and Akt was achieved only with the combination of erlotinib and rapamycin. This produced a synergistic effect on cell growth inhibition, observations that extended in vivo using xenograft models. These results suggest that combining rapamycin with erlotinib might be clinically useful to enhance response to erlotinib.[4]
Our objective was the preclinical assessment of the pharmacokinetics, monotherapy and combined antitumor activity of the epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor erlotinib in athymic nude mice bearing non-small cell lung cancer (NSCLC) xenograft models. Immunohistochemistry determined the HER1/EGFR status of the NSCLC tumor models. Pharmacokinetic studies assessed plasma drug concentrations of erlotinib in tumor- and non-tumor-bearing athymic nude mice. These were followed by maximum tolerated dose (MTD) studies for erlotinib and each chemotherapy. Erlotinib was then assessed alone and in combination with these chemotherapies in the NSCLC xenograft models. Complete necropsies were performed on most of the animals in each study to further assess antitumor or toxic effects. Erlotinib monotherapy dose-dependently inhibited tumor growth in the H460a tumor model, correlating with circulating levels of drug. There was antitumor activity at the MTD with each agent tested in both the H460a and A549 tumor models (erlotinib 100 mg/kg: 71 and 93% tumor growth inhibition; gemcitabine 120 mg/kg: 93 and 75% tumor growth inhibition; cisplatin 6 mg/kg: 81 and 88% tumor growth inhibition). When each compound was given at a fraction of the MTD, tumor growth inhibition was suboptimal. Combinations of gemcitabine or cisplatin with erlotinib were assessed at 25% of the MTD to determine efficacy. In both NSCLC models, doses of gemcitabine (30 mg/kg) or cisplatin (1.5 mg/kg) with erlotinib (25 mg/kg) at 25% of the MTD were well tolerated. For the slow growing A549 tumor, there was significant tumor growth inhibition in the gemcitabine/erlotinib and cisplatin/erlotinib combinations (above 100 and 98%, respectively), with partial regressions. For the faster growing H460a tumor, there was significant but less remarkable tumor growth inhibition in these same combinations (86 and 53% respectively). These results show that in NSCLC xenograft tumors with similar levels of EGFR expression, the antitumor activity of erlotinib is robust both as monotherapy and in combination with chemotherapies.[5]
The receptor for epidermal growth factor (EGFR) is overexpressed in many cancers. One important signaling pathway regulated by EGFR is the phosphatidylinositol 3'-kinase (PI3K)-phosphoinositide-dependent kinase 1-Akt pathway. Activation of Akt leads to the stimulation of antiapoptotic pathways, promoting cell survival. Akt also regulates the mammalian target of rapamycin (mTOR)-S6K-S6 pathway to control cell growth in response to growth factors and nutrients. Recent reports have shown that the sensitivity of non-small-cell lung cancer cell lines to EGFR inhibitors such as erlotinib (Tarceva, OSI Pharmaceuticals) is dependent on inhibition of the phosphatidylinositol 3'-kinase-phosphoinositide-dependent kinase 1-Akt-mTOR pathway. There can be multiple inputs to this pathway as activity can be regulated by other receptors or upstream mutations. Therefore, inhibiting EGFR alone may not be sufficient for substantial inhibition of all tumor cells, highlighting the need for multipoint intervention. Herein, we sought to determine if rapamycin, an inhibitor of mTOR, could enhance erlotinib sensitivity for cell lines derived from a variety of tissue types (non-small-cell lung, pancreatic, colon, and breast). Erlotinib could inhibit extracellular signal-regulated kinase, Akt, and S6 only in cell lines that were the most sensitive. Rapamycin could fully inhibit S6 in all cell lines, but this was accompanied by activation of Akt phosphorylation. However, combination with erlotinib could down-modulate rapamycin-stimulated Akt activity. Therefore, in select cell lines, inhibition of both S6 and Akt was achieved only with the combination of erlotinib and rapamycin. This produced a synergistic effect on cell growth inhibition, observations that extended in vivo using xenograft models. These results suggest that combining rapamycin with erlotinib might be clinically useful to enhance response to erlotinib.[6]
Background: Epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR) are crucial targets in cancer therapy. Combined inhibition of both targets yielded synergistic effects in vitro and in vivo in several cancer entities. However, the impact of EGFR and mTOR expression and combined inhibition in neuroendocrine lung tumors other than small-cell lung cancer remains unclear. Material and methods: Expression and activation of EGFR/AKT/mTOR pathway constituents were investigated in typical and atypical bronchial carcinoid (AC) tumors and large-cell neuroendocrine lung carcinomas (LCNEC) by immunohistochemistry in 110 tumor samples, and correlated with clinicopathological parameters and patient survival. Cytotoxicity of mTOR inhibitor everolimus and EGFR inhibitor erlotinib alone and in combination was assessed using growth inhibition assay in NCI-H720 AC and SHP-77 LCNEC cells. Cell cycle phase distribution was determined by FACS. Apoptosis-associated activation of caspase-3/7 was measured by Caspase-Glo® assay. Activity status of EGFR and mTOR pathway components was analyzed by immunoblotting. Results: Activation of the EGFR/AKT/mTOR axis could be demonstrated in all entities and was significantly increased in higher grade tumors. Neoadjuvant chemotherapy correlated significantly with p-AKT expression and p-ERK loss. Erlotinib combined with everolimus exerted synergistic combination effects in AC and LCNEC cells by induction of apoptosis, while cell cycle phase distribution remained unaffected. These effects could be explained by synergistic downregulation of phospho-mTOR, phospho-p70S6 kinase and phospho-AKT expression by everolimus and erlotinib. Conclusions: Our study indicates that EGFR and mTOR are clinically important targets in bronchial neuroendocrine tumors, and further in vivo and clinical exploration of combined inhibition is warranted.[7]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C22H23N3O4.HCL
分子量
429.90
精确质量
429.145
元素分析
C, 61.47; H, 5.63; Cl, 8.25; N, 9.77; O, 14.89
CAS号
183319-69-9
相关CAS号
Erlotinib-d6 hydrochloride;1189953-78-3;Erlotinib;183321-74-6;Erlotinib mesylate;248594-19-6;Erlotinib-13C6 hydrochloride;1210610-07-3;Erlotinib-d6;1034651-23-4
PubChem CID
176871
外观&性状
White to off-white solid powder
沸点
553.6ºC at 760 mmHg
熔点
223-225ºC
闪点
288.6ºC
蒸汽压
4.52E-12mmHg at 25°C
LogP
4.28
tPSA
74.73
氢键供体(HBD)数目
2
氢键受体(HBA)数目
7
可旋转键数目(RBC)
11
重原子数目
30
分子复杂度/Complexity
525
定义原子立体中心数目
0
SMILES
Cl[H].O(C([H])([H])C([H])([H])OC([H])([H])[H])C1C([H])=C2C(=NC([H])=NC2=C([H])C=1OC([H])([H])C([H])([H])OC([H])([H])[H])N([H])C1=C([H])C([H])=C([H])C(C#C[H])=C1[H]
InChi Key
GTTBEUCJPZQMDZ-UHFFFAOYSA-N
InChi Code
InChI=1S/C22H23N3O4.ClH/c1-4-16-6-5-7-17(12-16)25-22-18-13-20(28-10-8-26-2)21(29-11-9-27-3)14-19(18)23-15-24-22;/h1,5-7,12-15H,8-11H2,2-3H3,(H,23,24,25);1H
化学名
N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine;hydrochloride
别名
NSC718781 HCl; NSC-718781 HCl; CP358774 HCl, NSC 718781 HCl; erlotinib HCl; Tarceva; N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine hydrochloride; OSI-774; OSI 774; Erlotinib (Hydrochloride); CP-358774 HCl; CP 358774 HCl; OSI-774 HCl; OSI 774 HCl; OSI774 HCl; Erlotinib hydrochloride
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~4 mg/mL (~9.3 mM)
Water: <1 mg/mL
Ethanol: <1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 0.5 mg/mL (1.16 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 5.0 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 0.5 mg/mL (1.16 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 5.0 mg/mL 澄清 DMSO 储备液加入 900 μL 20% SBE-β-CD 生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: 0.5 mg/mL (1.16 mM) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
例如,若需制备1 mL的工作液,可将 100 μL 5.0 mg/mL 澄清 DMSO 储备液加入900 μL 玉米油中,混合均匀。


配方 4 中的溶解度: 15% Captisol: 15 mg/mL

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.3261 mL 11.6306 mL 23.2612 mL
5 mM 0.4652 mL 2.3261 mL 4.6522 mL
10 mM 0.2326 mL 1.1631 mL 2.3261 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
Erlotinib Hydrochloride and Cabozantinib-s-Malate Alone or in Combination as Second or Third Line Therapy in Treating Patients With Stage IV Non-small Cell Lung Cancer
CTID: NCT01708954
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-11-13
Erlotinib Hydrochloride in Treating Patients With Stage IB-IIIA Non-small Cell Lung Cancer That Has Been Completely Removed by Surgery (An ALCHEMIST Treatment Trial)
CTID: NCT02193282
Phase: Phase 3    Status: Active, not recruiting
Date: 2024-11-12
Gemcitabine Hydrochloride With or Without Erlotinib Hydrochloride Followed by the Same Chemotherapy Regimen With or Without Radiation Therapy and Capecitabine or Fluorouracil in Treating Patients With Pancreatic Cancer That Has Been Removed by Surgery
CTID: NCT01013649
Phase: Phase 3    Status: Active, not recruiting
Date: 2024-10-24
Erlotinib Hydrochloride and Onalespib Lactate in Treating Patients With Recurrent or Metastatic EGFR-Mutant Non-small Cell Lung Cancer
CTID: NCT02535338
Phase: Phase 1/Phase 2    Status: Active, not recruiting
Date: 2024-10-08
Phase Ib Study of Erlotinib Prior to Surgery in Patients with Head and Neck Cancer
CTID: NCT00954226
Phase: Phase 1    Status: Active, not recruiting
Date: 2024-10-03
View More

GDC-0449 and Erlotinib Hydrochloride With or Without Gemcitabine Hydrochloride in Treating Patients With Metastatic Pancreatic Cancer or Solid Tumors That Cannot Be Removed by Surgery
CTID: NCT00878163
Phase: Phase 1    Status: Active, not recruiting
Date: 2024-09-19


Gemcitabine Hydrochloride, Dasatinib, and Erlotinib Hydrochloride in Treating Patients With Pancreatic Cancer That Is Metastatic or Cannot Be Removed by Surgery
CTID: NCT01660971
Phase: Phase 1    Status: Active, not recruiting
Date: 2024-09-19
Erlotinib Hydrochloride and Irinotecan Hydrochloride in Treating Patients With Advanced Solid Tumors
CTID: NCT00045201
Phase: Phase 1    Status: Active, not recruiting
Date: 2024-09-05
Erlotinib, Docetaxel, and Radiation Therapy in Stage III or Stage IV Squamous Cell Carcinoma of the Head and Neck
CTID: NCT00720304
Phase: Phase 2    Status: Completed
Date: 2024-08-22
Erlotinib for Hepatocellular Carcinoma Chemoprevention
CTID: NCT04172779
Phase: Phase 2    Status: Not yet recruiting
Date: 2024-08-12
Combination Chemotherapy With or Without Erlotinib Hydrochloride in Treating Patients With Metastatic or Recurrent Squamous Cell Carcinoma of the Head and Neck
CTID: NCT01064479
Phase: Phase 2    Status: Completed
Date: 2024-07-16
Docetaxel, Cisplatin, and Erlotinib Hydrochloride in Treating Patients With Stage I-III Non-small Cell Lung Cancer Following Surgery
CTID: NCT00254384
Phase: Phase 1    Status: Completed
Date: 2024-07-05
OSI-774/Cisplatin/Taxotere in Head & Neck Squamous Cell Cancer
CTID: NCT00076310
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-07-05
Maintenance Chemotherapy With or Without Local Consolidative Therapy in Treating Patients With Stage IV Non-small Cell Lung Cancer
CTID: NCT03137771
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-04-05
Erlotinib Hydrochloride in Preventing Liver Cancer in Patients With Cirrhosis of the Liver
CTID: NCT02273362
Phase: Phase 1/Phase 2    Status: Completed
Date: 2024-03-26
Adjuvant Erlotinib After Completing Chemoradiotherapy in Locally Advanced Squamous Cell Carcinoma of the Head and Neck
CTID: NCT00079053
Phase: Phase 1    Status: Completed
Date: 2023-08-04
MET/VEGFR2 Inhibitor GSK1363089 and Erlotinib Hydrochloride or Erlotinib Hydrochloride Alone in Locally Advanced or Metastatic NSCLC That Has Not Responded to Previous Chemotherapy
CTID: NCT01068587
Phase: Phase 1/Phase 2    Status: Completed
Date: 2023-08-04
Lung-MAP: Biomarker-Targeted Second-Line Therapy in Treating Patients With Recurrent Stage IV Squamous Cell Lung Cancer
CTID: NCT02154490
Phase:    Status: Completed
Date: 2023-06-01
Everolimus, Erlotinib Hydrochloride, and Radiation Therapy in Treating Patients With Recurrent Head and Neck Cancer Previously Treated With Radiation Therapy
CTID: NCT01332279
Phase: Phase 1    Status: Withdrawn
Date: 2023-04-04
Erlotinib Hydrochloride in Reducing Duodenal Polyp Burden in Patients With Familial Adenomatous Polyposis at Risk of Developing Colon Cancer
CTID: NCT02961374
Phase: Phase 2    Status: Completed
Date: 2022-07-26
Pemetrexed Plus Tarceva as Salvage Treatment in EGFR Overexpressed Metastatic Colorectal Cancer Patients Who Were Failed After Standard Chemotherapy
CTID: NCT03086538
Phase: Phase 2    Status: Completed
Date: 2022-06-15
S0727 Gemcitabine Hydrochloride and Erlotinib Hydrochloride With or Without Monoclonal Antibody Therapy in Treating Patients With Metastatic Pancreatic Cancer That Cannot Be Removed By Surgery
CTID: NCT00617708
Phase: Phase 1/Phase 2    Status: Completed
Date: 2022-02-08
INC280 and Erlotinib Hydrochloride in Treating Patients With Non-small Cell Lung Cancer
CTID: NCT01911507
Phase: Phase 1    Status: Completed
Date: 2021-10-13
Tarceva With Whole Brain Radiation Therapy - Brain Mets From Non-Small Cell Lung Cancer
CTID: NCT00871923
Phase: Phase 2    Status: Completed
Date: 2021-09-16
Genistein, Gemcitabine, and Erlotinib in Treating Patients With Locally Advanced or Metastatic Pancreatic Cancer
CTID: NCT00376948
Phase: Phase 2    Status: Completed
Date: 2021-03-01
A Study to Evaluate the Efficacy of Bevacizumab in Combination With Tarceva for Advanced Non-Small Cell Lung Cancer
CTID: NCT00130728
Phase: Phase 3    Status: Completed
Date: 2021-01-14
Tarceva And Radiotherapy in Locally Advanced Lung Cancer Non-small Cell Lung Cancer
CTID: NCT00888511
Phase: Phase 2    Status: Completed
Date: 2020-11-27
Trastuzumab and Erlotinib as First-Line Therapy in Treating Women With Metastatic Breast Cancer Associated With HER2/Neu Overexpression
CTID: NCT00033514
Phase: Phase 1/Phase 2    Status: Completed
Date: 2020-10-08
Erlotinib Hydrochloride With or Without Bevacizumab in Treating Patients With Stage IV Non-small Cell Lung Cancer With Epidermal Growth Factor Receptor Mutations
CTID: NCT01532089
Phase: Phase 2    Status: Completed
Date: 2020-10-06
Pemetrexed Disodium With or Without Erlotinib Hydrochloride in Treating Patients With Stage IIIB-IV or Recurrent Non-Small Cell Lung Cancer
CTID: NCT00950365
Phase: Phase 2    Status: Completed
Date: 2020-09-16
Erlotinib Hydrochloride in Treating Participants With Muscle Invasive or Recurrent Urothelial Cancer
CTID: NCT00749892
Phase: Phase 2    Status: Completed
Date: 2020-09-10
Docetaxel and Erlotinib in Treating Older Patients With Prostate Cancer
CTID: NCT00087035
Phase: Phase 2    Status: Completed
Date: 2020-08-03
Erlotinib and Green Tea Extract (Polyphenon® E) in Preventing Cancer Recurrence in Former Smokers Who Have Undergone Surgery for Bladder Cancer
CTID: NCT00088946
Phase: Phase 2    Status: Completed
Date: 2020-07-31
Selumetinib and Erlotinib Hydrochloride in Treating Patients With Locally Advanced or Metastatic Pancreatic Cancer
CTID: NCT01222689
Phase: Phase 2    Status: Completed
Date: 2020-07-31
Erlotinib Hydrochloride Before Surgery in Treating Patients With Stage III Non-Small Cell Lung Cancer
CTID: NCT01857271
Phase: Phase 2    Status: Terminated
Date: 2020-07-08
Erlotinib Hydrochloride in Treating Patients With Bladder Cancer Undergoing Surgery
CTID: NCT02169284
Phase: Phase 2    Status: Terminated
Date: 2020-07-07
ChemoRT With Adjuvant Chemo in Pancreatic Cancer (TARCEVA)
CTID: NCT00313560
Phase: Phase 2    Status: Completed
Date: 2020-06-04
Erlotinib Hydrochloride and Radiation Therapy in Stage III-IV Squamous Cell Cancer of the Head and Neck
CTID: NCT01192815
Phase: Phase 2    Status: Terminated
Date: 2020-05-12
Erlotinib and Carboplatin in Recurrent Ovarian, Fallopian Tube, or Primary Peritoneal Cancer
CTID: NCT00030446
Phase: Phase 2    Status: Completed
Date: 2020-04-08
Study of OSI-774 (Tarceva) in Previously Untreated Elderly Lung Cancer Patients
CTID: NCT00137800
Phase: Phase 2    Status: Completed
Date: 2020-04-03
Gemcitabine With/Out Erlotinib in Unresectable Locally Advanced/Metastatic Pancreatic Cancer
CTID: NCT00026338
Phase: Phase 3    Status: Completed
Date: 2020-04-02
S0635: Erlotinib and Bevacizumab in Stage IIIB and IV Bronchioloalveolar Carcinoma
CTID: NCT00436332
Phase: Phase 2    Status: Completed
Date: 2020-04-02
Lung-MAP: Rilotumumab and Erlotinib Hydrochloride or Erlotinib Hydrochloride Alone as Second-Line Therapy in Treating Patients With Recurrent Stage IV Squamous Cell Lung Cancer and Positive Biomarker Matches
CTID: NCT02926638
Phase: Phase 2/Phase 3    Status: Terminated
Date: 2020-03-19
S0636: Erlotinib and Bevacizumab in Never-Smokers With Stage IIIB or Stage IV Primary Non-Small Cell Lung Cancer
CTID: NCT00445848
Phase: Phase 2    Status: Completed
Date: 2020-03-05
S0709: Erlotinib With or Without Carboplatin and Paclitaxel in Stage IIIB or Stage IV Non-Small Cell Lung Cancer
CTID: NCT00661193
Phase: Phase 2    Status: Completed
Date: 2020-02-20
Erlotinib Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia
CTID: NCT01664897
Phase: Phase 2    Status: Completed
Date: 2020-01-07
OSI-774 (Erlotinib, Tarceva) in Elderly Patients
CTID: NCT00200395
Phase: Phase 2    Status: Completed
Date: 2019-12-30
A Single-Dose,ComparativeBioavailability Study ofTwo Formulations ofErlotinib150mgTabletsunderFastingConditions
CTID: NCT04145570
Phase: Phase 4    Status: Completed
Date: 2019-10-30
Gemcitabine and Erlotinib Before and After Surgery in Treating Patients With Pancreatic Cancer That Can Be Removed by Surgery
CTID: NCT00733746
Phase: Phase 2    Status: Completed
Date: 2019-10-21
Hsp90 Inhibitor AUY922 and Erlotinib Hydrochloride in Treating Patients With Stage IIIB-IV Non-Small Cell Lung Cancer
CTID: NCT01259089
Phase: Phase 1/Phase 2    Status: Completed
Date: 2019-09-11
Erlotinib Hydrochloride With or Without Carboplatin and Paclitaxel in Treating Patients With Stage III-IV Non-small Cell Lung Cancer
CTID: NCT00126581
Phase: Phase 2    Status: Completed
Date: 2019-08-07
Cabozantinib-S-Malate and Erlotinib Hydrochloride in Treating Patients With Previously Treated Metastatic Non-Small Cell Lung Cancer
CTID: NCT01866410
Phase: Phase 2    Status: Completed
Date: 2019-05-16
Bevacizumab and Erlotinib Followed by Cisplatin or Carboplatin and Gemcitabine in Treating Patients With Newly Diagnosed or Recurrent Stage IIIB or Stage IV NSCLC
CTID: NCT00354549
Phase: Phase 2    Status: Completed
Date: 2019-05-15
Dual Epidermal Growth Factor Receptor Inhibition With Erlotinib and Panitumumab With or Without Chemotherapy for Advanced Colorectal Cancer
CTID: NCT00940316
Phase: Phase 2    Status: Completed
Date: 2019-05-07
Erlotinib in Treating Women Undergoing Surgery For Stage I, Stage II, or Stage III Breast Cancer
CTID: NCT00503841
Phase: N/A    Status: Terminated
Date: 2019-04-30
Erlotinib With or Without Fulvestrant in Treating Patients With Stage IIIB or Stage IV Non-Small Cell Lung Cancer
CTID: NCT00100854
Phase: Phase 2    Status: Completed
Date: 2019-03-05
Intensity-Modulated Radiation Therapy, Pemetrexed, and Erlotinib in Treating Patients With Recurrent or Second Primary Head and Neck Cancer
CTID: NCT00573989
Phase: Phase 1/Phase 2    Status: Terminated
Date: 2019-01-03
Tivantinib With or Without Erlotinib Hydrochloride in Treating Patients With Metastatic or Locally Advanced Kidney Cancer That Cannot Be Removed by Surgery
CTID: NCT01688973
Phase: Phase 2    Status: Completed
Date: 2019-01-03
Pilot Study of Preoperative Tarceva (Erlotinib) for Stages I/II Non-Small Cell Lung Cancer
CTID: NCT00385996
Phase: Phase 2    Status: Completed
Date: 2018-12-28
Erlotinib, Paclitaxel, and Carboplatin in Treating Patients With Stage III, Stage IV, or Recurrent Non-Small Cell Lung Cancer
CTID: NCT00287989
Phase: Phase 2    Status: Completed
Date: 2018-12-06
Docetaxel and Erlotinib in Treating Patients With Advanced Non-Small Cell Lung Cancer or Other Solid Tumors
CTID: NCT00390429
Phase: Phase 1/Phase 2    Status: Completed
Date: 2018-12-06
Nab-Paclitaxel and Bevacizumab Followed By Bevacizumab and Erlotinib in Metastatic Breast Cancer
CTID: NCT00733408
Phase: Phase 2    Status: Completed
Date: 2018-12-04
Avastin and Tarceva for Locally Advanced or Metastatic Non-Squamous Non-Small-Cell Lung Cancer
CTID: NCT00043823
Phase: Phase 1/Phase 2    Status: Completed
Date: 2018-11-07
Bevacizumab and Erlotinib After Radiation Therapy and Temozolomide in Treating Patients With Newly Diagnosed Glioblastoma Multiforme or Gliosarcoma
CTID: NCT00720356
Phase: Phase 2    Status: Completed
Date: 2018-10-26
Erlotinib Hydrochloride in Treating Patients With Malignant Peritoneal Mesothelioma
CTID: NCT01592383
Phase: Phase 2    Status: Completed
Date: 2018-10-16
Erlotinib and Cisplatin in Treating Patients With Recurrent or Metastatic Head and Neck Cancer
CTID: NCT00030576
Phase: Phase 1/Phase 2    Status: Completed
Date: 2018-10-10
Bevacizumab and Erlotinib in Treating Patients With Recurrent or Metastatic Head and Neck Cancer
CTID: NCT00055913
Phase: Phase 1/Phase 2    Status: Completed
Date: 2018-10-02
Erlotinib Hydrochloride and Isotretinoin in Treating Patients With Recurrent Malignant Glioma
CTID: NCT01103375
Phase: Phase 1    Status: Terminated
Date: 2018-08-01
Erlotinib and Surgery in Treating Patients With Head and Neck Cancer That Can Be Removed by Surgery
CTID: NCT00601913
PhaseEarly Phase 1    Status: Completed
Date: 2018-07-05
Sorafenib Combined With Erlotinib, Tipifarnib, or Temsirolimus in Treating Patients With Recurrent Glioblastoma Multiforme or Gliosarcoma
CTID: NCT00335764
Phase: Phase 1/Phase 2    Status: Completed
Date: 2018-07-02
Oxaliplatin, Fluorouracil, Erlotinib Hydrochloride, and Radiation Therapy Before Surgery and Erlotinib Hydrochloride After Surgery in Treating Patients With Locally Advanced Cancer of the Esophagus or Gastroesophageal Junction
CTID: NCT01561014
Phase: Phase 1    Status: Completed
Date: 2018-07-02
Docetaxel, Cisplatin, Pegfilgrastim, and Erlotinib Hydrochloride in Treating Patients With Stage IIIB or Stage IV Non-Small Cell Lung Cancer
CTID: NCT01557959
Phase: Phase 2    Status: Completed
Date: 2018-06-29
Single Agent Erlotinib in Chemotherapy-naive Androgen Independent Prostate Cancer
CTID: NCT00272038
Phase: Phase 2    Status: Completed
Date: 2018-06-27
Tipifarnib and Erlotinib Hydrochloride in Treating Patients With Advanced Solid Tumors
CTID: NCT00085553
Phase: Phase 1    Status: Completed
Date: 2018-05-18
Radiation Therapy and Stereotactic Radiosurgery With or Without Temozolomide or Erlotinib in Treating Patients With Brain Metastases Secondary to Non-Small Cell Lung Cancer
CTID: NCT00096265
Phase: Phase 3    Status: Terminated
Date: 2018-03-09
Carboplatin, Paclitaxel, Cetuximab, and Erlotinib Hydrochloride in Treating Patients With Metastatic or Recurrent Head and Neck Squamous Cell Cancer
CTID: NCT01316757
Phase: Phase 2    Status: Completed
Date: 2018-02-26
Carboplatin and Paclitaxel Albumin-Stabilized Nanoparticle Formulation Followed by Radiation Therapy and Erlotinib in Treating Patients With Stage III Non-Small Cell Lung Cancer That Cannot Be Removed By Surgery
CTID: NCT00553462
Phase: Phase 2    Status: Completed
Date: 2018-01-31
Bevacizumab and Erlotinib in Treating Patients With Metastatic Pancreatic Cancer That Did Not Respond to Previous Treatment With Gemcitabine
CTID: NCT00365144
Phase: Phase 2    Status: Completed
Date: 2018-01-19
Erlotinib Combined With Gemcitabine in Treating Patients With Newly Diagnosed Locally Advanced or Metastatic Pancreatic Cancer or Other Solid Tumors
CTID: NCT00033241
Phase: Phase 1    Status: Completed
Date: 2018-01-10
OSI-774 (Tarceva) Plus Gemcitabine in Patients With Locally Advanced, Unresectable or Metastatic Pancreatic Cancer.
CTID: NCT00040183
Phase: Phase 3    Status: Completed
Date: 2018-01-10
OSI-774 (Tarceva) in Treating Patients With Stage III or Stage IV Non-Small Cell Lung Cancer
CTID: NCT00036647
Phase: Phase 3    Status: Completed
Date: 2018-01-10
Erlotinib, Cisplatin, and Radiation Therapy in Treating Patients With Stage IB-Stage IVA Cervical Cancer
CTID: NCT00428194
Phase: Phase 1    Status: Withdrawn
Date: 2017-11-29
S0330 Erlotinib in Treating Patients With Unresectable or Metastatic Malignant Peripheral Nerve Sheath Tumor
CTID: NCT00068367
Phase: Phase 2    Status: Completed
Date: 2017-11-06
Carboplatin, Pemetrexed Disodium, and Bevacizumab for Patients With Stage III or IV Non-Small Cell Lung Cancer Who Are Light/Never Smokers
CTID: NCT01344824
Phase: Phase 2    Status: Completed
Date: 2017-10-30
Bevacizumab and Erlotinib or Sorafenib as First-Line Therapy in Treating Patients With Advanced Liver Cancer
CTID: NCT00881751
Phase: Phase 2    Status: Completed
Date: 2017-09-11
Safety and Efficacy Study of Tarceva, Temodar, and Radiation Therapy in Patients With Newly Diagnosed Brain Tumors
CTID: NCT00187486
Phase: Phase 2    Status: Completed
Date: 2017-09-05
Study of Neoadjuvant Treatment in Patients With Pancreatic Cancer That is Potentially Resectable
CTID: NCT01531712
Phase: Phase 2    Status: Terminated
Date: 2017-08-29
Erlotinib in Treating Patients With Recurrent Malignant Glioma or Recurrent or Progressive Meningioma
CTID: NCT00045110
Phase: Phase 1/Phase 2    Status: Completed
Date: 2017-08-17
Erlotinib Compared With Temozolomide or Carmustine in Treating Patients With Recurrent Glioblastoma Multiforme
CTID: NCT00086879
Phase: Phase 2    Status: Completed
Date: 2017-07-27
Erlotinib Hydrochloride and Bevacizumab in Treating Patients With Stage IV Breast Cancer
CTID: NCT00054132
Phase: Phase 2    Status: Completed
Date: 2017-07-24
Gemcitabine Hydrochloride, Oxaliplatin, and Erlotinib Hydrochloride in Treating Patients With Advanced Biliary Tract Cancer, Pancreatic Cancer, Duodenal Cancer, or Ampullary Cancer
CTID: NCT00987766
Phase: Phase 1    Status: Completed
Date: 2017-07-02
Combination Chemotherapy, Bev, RT, and Erlotinib in Treating Patients With Stage III Non-Small Cell Lung Cancer
CTID: NCT00280150
Phase: Phase 1/Phase 2    Status: Completed
Date: 2017-06-19
Proteomic Profiling in Predicting Response in Patients Receiving Erlotinib for Stage IIIB, Stage IV, or Recurrent Non-Small Cell Lung Cancer
CTID: NCT00550537
Phase: Phase 2    Status: Completed
Date: 2017-06-08
Sunitinib and Erlotinib in Treating Patients With Unresectable or Metastatic Kidney Cancer
CTID: NCT00425386
Phase: Phase 2    Status: Completed
Date: 2017-05-03
Ph II Gemcitabine, Erlotinib, and Gemcitabine With Erlotinib/Elderly Patients W/ IIIB/IV NSCLC
CTID: NCT00283244
Phase: Phase 2    Status: Completed
Date: 2017-04-24
Erlotinib and Gemcitabine With or Without Panitumumab in Treating Patients With Metastatic Pancreatic Cancer
CTID: NCT00550836
Phase: Phase 2    Status: Completed
Date: 2017-04-05
A Study of MetMAb Administered to Patients With Advanced Non-Small Cell Lung Cancer, in Combination With Tarceva (Erlotinib)
CTID: NCT00854308
Phase: Phase 2    Status: Completed
Date: 2017-03-31
A Study of Changes in FDG- and FLT-PET Imaging in Patients With Non-Small Cell Lung Cancer Following Treatment With Erlotinib
CTID: NCT00453362
Phase: Phase 1/Phase 2    Status: Completed
Date: 2017-03-31
Erlotinib Hydrochloride With or Without Celecoxib in Treating Patients With Stage IIIB-IV Non-Small Cell Lung Cancer
CTID: NCT00499655
Phase: Phase 2    Status: Completed
Date: 2017-03-29
Targeted Treatment With Intercalated Radiotherapy in EGFR-mutant IIIA/IIIB NSCLC
CTID: NCT03074864
Phase: Phase 2/Phase 3    Status: Unknown status
Date: 2017-03-09
Erlotinib in Treating Patients With Stage III or Stage IV Pancreatic Cancer
CTID: NCT00470535
Phase: Phase 2    Status: Terminated
Date: 2017-02-23
Erlotinib and Gemcitabine in Treating Patients With Metastatic Breast Cancer Previously Treated With An Anthracycline and/or a Taxane
CTID: NCT00059852
Phase: Phase 2    Status: Completed
Date: 2016-12-07
MK2206 and Erlotinib Hydrochloride in Treating Patients With Advanced Non-Small Cell Lung Cancer Who Have Progressed After Previous Response to Erlotinib Hydrochloride Therapy
CTID: NCT01294306
Phase: Phase 2    Status: Completed
Date: 2016-11-29
A Study of the Safety and Pharmacology of GDC-0941 in Combination With Erlotinib in Patients With Advanced Solid Tumors
CTID: NCT00975182
Phase: Phase 1    Status: Completed
Date: 2016-11-02
Erlotinib Hydrochloride and Quinacrine Dihydrochloride in Stage IIIB-IV Non-Small Cell Lung Cancer
CTID: NCT01839955
Phase: Phase 1    Status: Completed
Date: 2016-10-31
Erlotinib in Treating Patients With Metastatic and/or Recurrent Head and Neck Cancer
CTID: NCT00281866
Phase: Phase 2    Status: Completed
Date: 2016-10-12
Phase 1 Erlotinib and Dovitinib (TKI258) in Advanced Non-small Cell Lung Cancer (NSCLC)
CTID: NCT01515969
Phase: Phase 1    Status: Terminated
Date: 2016-07-12
Tarceva Surgery for Resectable Stage IIIA(N2) and IIIB (T4 N2) Non-Small-Cell Lung Cancer
CTID: NCT00063258
Phase: Phase 2    Status: Terminated
Date: 2016-05-09
Erlotinib and Sorafenib in Treating Patients With Progressive or Recurrent Glioblastoma Multiforme
CTID: NCT00445588
Phase: Phase 2    Status: Completed
Date: 2016-04-27
A Study Comparing Bevacizumab Therapy With or Without Erlotinib for First-Line Treatment of Non-Small Cell Lung Cancer (ATLAS)
CTID: NCT00257608
Phase: Phase 3    Status: Completed
Date: 2016-04-18
Erlotinib and Radiation Therapy in Treating Older Patients With Stage I, Stage II, Stage III, or Stage IV Esophageal Cancer
CTID: NCT00524121
Phase: Phase 2    Status: Completed
Date: 2016-04-14
Tarceva With or Without Apatinib in the Advanced Lung Adenocarcinoma
CTID: NCT02704767
Phase: Phase 2    Status: Unknown status
Date: 2016-03-10
Erlotinib Plus Docetaxel in Treating Patients With Stage IV or Recurrent Breast Cancer
CTID: NCT00054275
Phase: Phase 2    Status: Completed
Date: 2016-02-17
Gemcitabine With or Without Capecitabine and/or Radiation Therapy or Gemcitabine With or Without Erlotinib in Treating Patients With Locally Advanced Pancreatic Cancer That Cannot Be Removed by Surgery
CTID: NCT00634725
Phase: Phase 3    Status: Completed
Date: 2015-12-11
Erlotinib and Radiation Therapy in Treating Young Patients With Newly Diagnosed Glioma
CTID: NCT00124657
Phase: Phase 1/Phase 2    Status: Completed
Date: 2015-12-04
Pemetrexed Disodium or Erlotinib Hydrochloride as Second-Line Therapy in Treating Patients With Advanced Non-small Cell Lung Cancer
CTID: NCT00738881
Phase: Phase 3    Status: Terminated
Date: 2015-10-29
Pemetrexed or Docetaxel With or Without Erlotinib in Stage IIIB or Stage IV Non-Small Cell Lung Cancer
CTID: NCT00660816
Phase: Phase 2    Status: Completed
Date: 2015-10-12
Erlotinib Hydrochloride in Treating Non-Small Cell Lung Cancer That is Metastatic or Cannot be Removed by Surgery in Patients With HIV Infection
CTID: NCT02134886
Phase: Phase 1    Status: Terminated
Date: 2015-10-06
Erlotinib Hydrochloride and Cetuximab in Treating Patients With Advanced Gastrointestinal Cancer, Head and Neck Cancer, Non-Small Cell Lung Cancer, or Colorectal Cancer
CTID: NCT00397384
Phase: Phase 1    Status: Completed
Date: 2015-09-30
RO4929097 and Erlotinib Hydrochloride in Treating Patients With Stage IV or Recurrent Non-small Cell Lung Cancer
CTID: NCT01193881
Phase: Phase 1    Status: Terminated
Date: 2015-09-29
Sorafenib and Erlotinib in Treating Patients With Metastatic or Unresectable Solid Tumors
CTID: NCT00126620
Phase: Phase 1    Status: Completed
Date: 2015-07-23
An Umbrella, Modular Study Based on Epidermal Growth Factor Receptor (EGFR) Mutation Status
CTID: NCT00903734
Phase: Phase 1    Status: Completed
Date: 2015-07-13
Study of Erlotinib in Combination With Dasatinib
CTID: NCT00895128
Phase: Phase 1    Status: Completed
Date: 2015-07-13
Study of Erlotinib in Combination With Bortezomib
CTID: NCT00895687
Phase: Phase 1    Status: Completed
Date: 2015-07-13
Pemetrexed Disodium and Carboplatin or Cisplatin With or Without Erlotinib Hydrochloride in Treating Patient With Stage IV Non-Small Cell Lung Cancer Resistant to First-Line Therapy With Erlotinib Hydrochloride or Gefitinib
CTID: NCT01928160
Phase: Phase 2    Status: Withdrawn
Date: 2015-07-13
Bevacizumab and Erlotinib in Treating Patients With Advanced Liver Cancer
CTID: NCT00365391
Phase: Phase 2    Status: Completed
Date: 2015-07-09
A Study to Evaluate Erlotinib in Patients With Advanced or Metastatic Breast Cancer During or Following Chemotherapy
CTID: NCT00109265
Phase: Phase 2    Status: Completed
Date: 2015-07-02
Sorafenib Tosylate and Erlotinib Hydrochloride in Treating Patients With Locally Advanced, Unresectable, or Metastatic Gallbladder Cancer or Cholangiocarcinoma
CTID: NCT01093222
Phase: Phase 2    Status: Completed
Date: 2015-06-30
Phase I/II Trial of Radiation, Avastin and Tarceva for Pancreatic Adenocarcinoma
CTID: NCT00735306
Phase: Phase 1    Status: Completed
Date: 2015-06-18
Study of Polyphenon E in Addition to Erlotinib in Advanced Non Small Cell Lung Cancer
CTID: NCT00707252
Phase: Phase 1    Status: Terminated
Date: 2015-04-21
Erlotinib in Treating Patients With Recurrent or Metastatic Colorectal Cancer
CTID: NCT00032110
Phase: Phase 2    Status: Completed
Date: 2015-04-15
Study of Biological Effect of Tarceva (OSI-774) for Patients Stricken by ENT Epidermoid Carcinoma
CTID: NCT00144976
Phase: N/A    Status: Completed
Date: 2015-03-27
Erlotinib Hydrochloride in Preventing Cancer in Patients With Precancerous Lesions of the Lung
CTID: NCT01013831
Phase: Phase 1    Status: Terminated
Date: 2015-02-18
Gemcitabine, Capecitabine, and Erlotinib in Treating Patients With Advanced Pancreatic Cancer
CTID: NCT00885066
Phase: Phase 1    Status: Completed
Date: 2015-02-10
Erlotinib Hydrochloride in Treating Patients With Stage I-III Colorectal Cancer or Adenoma
CTID: NCT00754494
Phase: Phase 2    Status: Completed
Date: 2015-01-06
Erlotinib in Treating Patients With Stage III or Stage IV Non-Small Cell Lung Cancer
CTID: NCT00275132
Phase: Phase 3    Status: Completed
Date: 2014-12-03
Phase I/II Study of Postoperative Adjuvant Chemoradiation for Advanced-Stage Cutaneous Squamous Cell Carcinoma of the Head and Neck (cSCCHN)
CTID: NCT01465815
Phase: Phase 1/Phase 2    Status: Withdrawn
Date: 2014-11-19
Bevacizumab, Everolimus, and Erlotinib in Treating Patients With Advanced Solid Tumors
CTID: NCT00276575
Phase: Phase 1    Status: Completed
Date: 2014-11-19
Study of Bevacizumab Plus Temodar and Tarceva in Patients With Glioblastoma or Gliosarcoma
CTID: NCT00525525
Phase: Phase 2    Status: Completed
Date: 2014-11-14
Erlotinib Hydrochloride in Treating Patients With Pancreatic Cancer That Can Be Removed by Surgery
CTID: NCT00482625
Phase: Phase 2    Status: Terminated
Date: 2014-10-16
Celecoxib and Erlotinib in Treating Former Smokers With Stage IIIB e.querySelector("font strong").innerText

生物数据图片
  • Erlotinib HCl

  • Erlotinib HCl
  • Erlotinib HCl
相关产品
联系我们