规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 mM * 1 mL in DMSO |
|
||
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
靶点 |
PERK (IC50 = 5 nM)
|
|
---|---|---|
体外研究 (In Vitro) |
ISRIB 阻断内源性 ATF4 的产生,而 XBP1 mRNA 剪接和 XBP1s 的产生持续存在。通过阻断 UPR PERK 分支的信号传导,ISRIB 可以防止细胞重新建立 ER 稳态,并降低正在经历 ER 应激的细胞的活力。 [1]
ISRIB处理的细胞对eIF2α磷酸化具有抗性。 ISRIB是PERK分支特异性的,但不会损害PERK磷酸化。 ISRIB会损害对ER压力的适应。[1] ISRIB显著降低了应激和eIF2α磷酸化引起的翻译效应。 ISRIB可防止仅由eIF2α磷酸化引发的应激颗粒的形成。 ISRIB触发应力颗粒的快速分解并恢复平移。[2] |
|
体内研究 (In Vivo) |
eIF2α+/S51A(Eif2s1+/S51A)杂合子小鼠表现出增强的记忆,而脑锥体细胞中eIF2α激酶PKR的诱导会损害记忆(Costa-Mattioli等人,2007;Jiang等人,2010)。基于这些观察,我们想知道用ISRIB治疗小鼠是否会影响记忆。ISRIB在药代动力学分析实验中显示出良好的特性,表明体内研究具有足够的生物利用度。ISRIB在血浆中的半衰期为8小时(图6A),很容易穿过血脑屏障,迅速与中枢神经系统平衡(图6B)。单次腹腔注射后,我们在小鼠大脑中检测到ISRIB,其浓度比IC50高几倍(注射后24小时,ISRIB在大脑中的浓度约为60 nM)。为了探索ISRIB对记忆的影响,我们给小鼠腹腔注射了ISRIB,并测试了海马依赖的空间学习。为此,我们在Morris水迷宫中训练了小鼠,在这个迷宫中,动物学会了将视觉线索与水下隐藏平台的位置联系起来。因为我们在寻找记忆增强,所以我们使用了一个弱训练方案。如图6C所示,与赋形剂治疗的对照组(68.1±20秒,p<0.05)相比,ISRIB治疗的小鼠到达隐藏平台的速度明显更快(5天训练后的逃逸潜伏期=16.4±4.8秒)。在第3天和第4天,这种差异已经明显。与这些结果一致,在训练结束时进行的“探测测试”中,ISRIB治疗的小鼠明显更喜欢目标象限,其中平台从池中移除(p<0.05;图6D),平台位置的交叉增加(p<0.05;见图6E)。[1]
ISRIB 在药代动力学分析实验中表现出积极的特性,并且具有良好的体内生物利用度。通过改善空间和恐惧相关的学习,ISRIB(0.25 mg/kg ip)可改善小鼠的长期记忆。 [1] |
|
酶活实验 |
在 96 孔板中,放置表达 ATF4-dGFP-IRES-Cherry 报告基因的 U2OS 细胞。对于 8 小时的处理,然后将细胞暴露于 100 nM Thapsigargin 和 10 M 精选化合物中。 Hoechst 33,258 染色后,使用自动显微镜观察染色细胞。 INCell Developer Toolbox 软件 1.9 版用于收集数据和分析图像。阻止 ATF4-dGFP 报告基因被诱导、不阻止 IRES 下游 mCherry 积累、并且根据通过细胞核计数测量的细胞数量被认为是无毒的化合物被再次购买用于额外测试。
|
|
细胞实验 |
在 96 孔板上,将 U2OS 细胞铺板并给予过夜恢复。在存在或不存在 100 nM ISRIB 或仅存在 ISRIB 的情况下,用 2 µg/ml 衣霉素、100 nM 毒胡萝卜素、100 nM ISRIB 处理后测量 eIF2α 磷酸化水平。
磷酸-S51 eIF2α的阿尔法筛选[1] 将U2OS细胞铺在96孔板上,并放置过夜以恢复。在100 nM ISRIB存在或不存在的情况下,用2µg/ml衣霉素或100 nM thapsigargin处理细胞,或单独用ISRIB处理细胞,并按照制造商的建议使用AlphaScreen SureFire eIF2α(p-Ser51)检测试剂盒测定eIF2α磷酸化水平。使用标准阿尔法屏幕设置在Envision Xcite多标签阅读器中读取印版。 HEK293T细胞用或不用1μg/ml的衣霉素、衣霉素和ISRIB(200 nM)或ISRIB处理1小时。加入环己胺(CHX)(100μg/ml)2分钟,用冰冷的PBS(含100μg/ml的CHX)洗涤细胞,并在20 mM Tris pH=7.4(RT)、200 mM NaCl、15 mM MgCl、1 mM DTT、8%甘油、100μg/ml CHX、1%Triton和蛋白酶抑制剂中裂解。使用注射器(25G5/8)研磨细胞,在12000 rpm下澄清裂解物10分钟,一半裂解物用于RNA提取,另一半用RNase I消化。根据分析多核糖体梯度分析的多核糖体塌缩到单体峰,优化每个样品的RNase I量和温育时间。用SUPERaseIn淬灭反应,然后将消化的裂解物装载在800μl蔗糖垫上(1.7 g蔗糖溶解在3.9 ml不含Triton的裂解缓冲液中),并在TLA100.2转子中以70000 rpm离心4小时。将沉淀物重新悬浮在10 mM Tris pH=7(RT)中,提取RNA(苯酚/氯仿)。[2] |
|
动物实验 |
|
|
药代性质 (ADME/PK) |
ISRIB showed favorable properties in pharmacokinetic profiling experiments indicating sufficient bioavailability for in vivo studies. ISRIB displayed a half-life in plasma of 8 hr (Figure 6A) and readily crossed the blood-brain barrier, quickly equilibrating with the central nervous system (Figure 6B). After a single intraperitoneal injection, we detected ISRIB in the brain of mice at concentrations several fold higher than its IC50 (24 hr after injection, the ISRIB concentration in the brain was approximately 60 nM).[1]
Pharmacokinetics of ISRIB[1] Intra-peritoneal (ip) route of administration was performed on 6–7 wk old female CD-1 mice. Animals received a single, 5 mg/kg dose in groups of three mice/compound/route of administration. ISRIB was dissolved in DMSO then diluted 1:1 in Super-Refined PEG 400. Blood (80 μl) was collected from the saphenous vein at intervals post-dosing (20 min, 1 hr, 3 hr, 8 hr, 24 hr) in EDTA containing collection tubes (Sarstadt CB300) and plasma was prepared for analysis. Compounds were detected by time-of-flight mass spectroscopy. Intra-peritoneal (ip) route of administration was performed at a single dose of 2.5 mg/kg in groups of three for each time-point (2, 6, 24 and 36 hr). Brain tissue samples were individually homogenized with a Tissue Tearor. Approximately 300 mg of tissue was placed in 5-ml polypropylene tube, and four volumes of water were then added to mix. The speed scale of Tissue Tearor was set at 3 for 2 min. After homogenization, the supernatant was analyzed by LC-MS/MS to determine their brain concentration. Plasma samples were collected prior to extraction of brain samples. |
|
参考文献 | ||
其他信息 |
Phosphorylation of the α-subunit of initiation factor 2 (eIF2) controls protein synthesis by a conserved mechanism. In metazoa, distinct stress conditions activate different eIF2α kinases (PERK, PKR, GCN2, and HRI) that converge on phosphorylating a unique serine in eIF2α. This collection of signaling pathways is termed the 'integrated stress response' (ISR). eIF2α phosphorylation diminishes protein synthesis, while allowing preferential translation of some mRNAs. Starting with a cell-based screen for inhibitors of PERK signaling, we identified a small molecule, named ISRIB, that potently (IC50 = 5 nM) reverses the effects of eIF2α phosphorylation. ISRIB reduces the viability of cells subjected to PERK-activation by chronic endoplasmic reticulum stress. eIF2α phosphorylation is implicated in memory consolidation. Remarkably, ISRIB-treated mice display significant enhancement in spatial and fear-associated learning. Thus, memory consolidation is inherently limited by the ISR, and ISRIB releases this brake. As such, ISRIB promises to contribute to our understanding and treatment of cognitive disorders. DOI:http://dx.doi.org/10.7554/eLife.00498.001.[1]
Previously, we identified ISRIB as a potent inhibitor of the integrated stress response (ISR) and showed that ISRIB makes cells resistant to the effects of eIF2α phosphorylation and enhances long-term memory in rodents (Sidrauski et al., 2013). Here, we show by genome-wide in vivo ribosome profiling that translation of a restricted subset of mRNAs is induced upon ISR activation. ISRIB substantially reversed the translational effects elicited by phosphorylation of eIF2α and induced no major changes in translation or mRNA levels in unstressed cells. eIF2α phosphorylation-induced stress granule (SG) formation was blocked by ISRIB. Strikingly, ISRIB addition to stressed cells with pre-formed SGs induced their rapid disassembly, liberating mRNAs into the actively translating pool. Restoration of mRNA translation and modulation of SG dynamics may be an effective treatment of neurodegenerative diseases characterized by eIF2α phosphorylation, SG formation, and cognitive loss.[2] |
分子式 |
C22H24CL2N2O4
|
---|---|
分子量 |
451.344
|
精确质量 |
450.111
|
元素分析 |
C, 58.55; H, 5.36; Cl, 15.71; N, 6.21; O, 14.18
|
CAS号 |
1597403-47-8
|
相关CAS号 |
ISRIB;548470-11-7
|
PubChem CID |
1011240
|
外观&性状 |
White to off-white solid powder
|
密度 |
1.3±0.1 g/cm3
|
沸点 |
719.0±60.0 °C at 760 mmHg
|
闪点 |
388.6±32.9 °C
|
蒸汽压 |
0.0±2.3 mmHg at 25°C
|
折射率 |
1.603
|
LogP |
4.49
|
tPSA |
76.66
|
氢键供体(HBD)数目 |
2
|
氢键受体(HBA)数目 |
4
|
可旋转键数目(RBC) |
8
|
重原子数目 |
30
|
分子复杂度/Complexity |
493
|
定义原子立体中心数目 |
0
|
SMILES |
ClC1C([H])=C([H])C(=C([H])C=1[H])OC([H])([H])C(N([H])C1([H])C([H])([H])C([H])([H])C([H])(C([H])([H])C1([H])[H])N([H])C(C([H])([H])OC1C([H])=C([H])C(=C([H])C=1[H])Cl)=O)=O
|
InChi Key |
HJGMCDHQPXTGAV-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C22H24Cl2N2O4/c23-15-1-9-19(10-2-15)29-13-21(27)25-17-5-7-18(8-6-17)26-22(28)14-30-20-11-3-16(24)4-12-20/h1-4,9-12,17-18H,5-8,13-14H2,(H,25,27)(H,26,28)
|
化学名 |
2-(4-chlorophenoxy)-N-[4-[[2-(4-chlorophenoxy)acetyl]amino]cyclohexyl]acetamide
|
别名 |
ISRIB; 1597403-47-8; trans-ISRIB; 548470-11-7; ISRIB (trans-isomer); 1597403-48-9; N,N'-(cis-Cyclohexane-1,4-diyl)bis(2-(4-chlorophenoxy)acetamide); ISRIB trans-isomer; trans-ISRIB
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: 0.83 mg/mL (1.84 mM) in 50% PEG300 +50% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浮液; 超声助溶 (<60°C).
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.2156 mL | 11.0781 mL | 22.1562 mL | |
5 mM | 0.4431 mL | 2.2156 mL | 4.4312 mL | |
10 mM | 0.2216 mL | 1.1078 mL | 2.2156 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。