规格 | 价格 | 库存 | 数量 |
---|---|---|---|
500mg |
|
||
1g |
|
||
Other Sizes |
|
毒性/毒理 (Toxicokinetics/TK) |
Toxicity Summary
Accumulation of L-lactic acid in the body has been shown to be toxic. At times of lactic acidosis, when excess intracellular lactate is released into the blood, maintenance of electroneutrality of the blood requires that a cation be released into the blood, as well. This can reduce blood pH. Lactate may exert a strong action over GABAergic networks in the developing brain, making them more inhibitory than it was previously assumed, acting either through better support of metabolites, or alterations in base intracellular pH levels, or both. (Wikipedia) Toxicity Data LC50 (rat) > 7,940 mg/m3/4hr |
---|---|
其他信息 |
(S)-lactic acid is an optically active form of lactic acid having (S)-configuration. It has a role as an Escherichia coli metabolite and a human metabolite. It is a 2-hydroxypropanoic acid and a (2S)-2-hydroxy monocarboxylic acid. It is a conjugate acid of a (S)-lactate. It is an enantiomer of a (R)-lactic acid.
L-Lactic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). L-Lactic acid has been reported in Arabidopsis thaliana, Homo sapiens, and other organisms with data available. Lactic Acid, L- is the levorotatory isomer of lactic acid, the biologically active isoform in humans. Lactic acid or lactate is produced during fermentation from pyruvate by lactate dehydrogenase. This reaction, in addition to producing lactic acid, also produces nicotinamide adenine dinucleotide (NAD) that is then used in glycolysis to produce energy source adenosine triphosphate (ATP). Lactic acid plays a role in several biochemical processes and is produced in the muscles during intense activity. Lactate measurement in the critically ill has been traditionally used to stratify patients with poor outcome. However, plasma lactate levels are the result of a finely tuned interplay of factors that affect the balance between its production and its clearance. When the oxygen supply does not match its consumption, organisms such as man who are forced to produce ATP for their integrity adapt in many different ways up to the point when energy failure occurs. Lactate, being part of the adaptive response, may then be used to assess the severity of the supply/demand imbalance. In such a scenario, the time to intervention becomes relevant: early and effective treatment may allow the cell to revert to a normal state, as long as the oxygen machinery (i.e. mitochondria) is intact. Conversely, once the mitochondria are deranged, energy failure occurs even in the presence of normoxia. The lactate increase in critically ill patients may therefore be viewed as an early marker of a potentially reversible state. A number of studies have demonstrated that malignant transformation is associated with an increase in glycolytic flux and in anaerobic and aerobic cellular lactate excretion. Using quantitative bioluminescence imaging in various primary carcinomas in patients (uterine cervix, head and neck, colorectal region) at first diagnosis of the disease, lactate concentrations in tumors in vivo could be relatively low or extremely high (up to 40 micromol/g) in different individual tumors or within the same lesion. In all tumor entities investigated, high molar concentrations of lactate were correlated with a high incidence of distant metastasis already in an early stage of the disease. Low lactate tumors (< median of approximately 8 micromol/g) were associated with both a longer overall and disease free survival compared to high lactate lesions (lactate > approximately 8 micromol/g). Lactate dehydrogenase was found to be upregulated in most of these tumors compared to surrounding normal tissue. (A3333, A3334). L-Lactic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A normal intermediate in the fermentation (oxidation, metabolism) of sugar. The concentrated form is used internally to prevent gastrointestinal fermentation. (From Stedman, 26th ed) See also: Polylactide, L- (monomer of); Arnica montana; lactic acid, L-; zinc oxide (component of); Lactic Acid (annotation moved to) ... View More ... Drug Indication Prevention of pregnancy |
分子式 |
C3H6O3
|
---|---|
分子量 |
90.07
|
精确质量 |
90.031
|
CAS号 |
79-33-4
|
相关CAS号 |
Sodium (S)-2-hydroxypropanoate;867-56-1;L-Lactic acid-13C3;87684-87-5;L-Lactic acid-2-13C1;740788-63-0
|
PubChem CID |
107689
|
外观&性状 |
Colorless to light yellow <53°C powder,>53°C liquid
|
密度 |
1.3±0.1 g/cm3
|
沸点 |
227.6±0.0 °C at 760 mmHg
|
熔点 |
52-54°C
|
闪点 |
109.9±16.3 °C
|
蒸汽压 |
0.0±1.0 mmHg at 25°C
|
折射率 |
1.451
|
LogP |
-0.7
|
tPSA |
57.53
|
氢键供体(HBD)数目 |
2
|
氢键受体(HBA)数目 |
3
|
可旋转键数目(RBC) |
1
|
重原子数目 |
6
|
分子复杂度/Complexity |
59.1
|
定义原子立体中心数目 |
1
|
SMILES |
[C@H](O)(C)C(=O)O
|
InChi Key |
JVTAAEKCZFNVCJ-REOHCLBHSA-N
|
InChi Code |
InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,(H,5,6)/t2-/m0/s1
|
化学名 |
(2S)-2-hydroxypropanoic acid
|
别名 |
L-(+)-Lactic acid; Paralactic acid; L-Lactic acid
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
H2O : ~100 mg/mL (~1110.12 mM)
DMSO : ~100 mg/mL (~1110.12 mM) |
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.08 mg/mL (23.09 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.08 mg/mL (23.09 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.08 mg/mL (23.09 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: 100 mg/mL (1110.12 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶. 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 11.1025 mL | 55.5124 mL | 111.0248 mL | |
5 mM | 2.2205 mL | 11.1025 mL | 22.2050 mL | |
10 mM | 1.1102 mL | 5.5512 mL | 11.1025 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。