Norepinephrine (Levarterenol; L-Noradrenaline)

别名: Norepinephrine; Noradrenaline; Noradrenalin; Levarterenol; Levophed Arterenol 去甲肾上腺素;L-去甲肾上腺素;甲去肾上腺素;4-(2-氨基-1-羟基乙基)-1,2-苯二酚;去甲肾上腺素杂质;盐酸去甲肾上腺素;(R)-4-(2-氨基-1-羟基乙基)-1,2-苯二酚
目录号: V13165 纯度: ≥98%
去甲肾上腺素 (Levarterenol; L-Noradrenaline) 是一种有效的 β1 选择性肾上腺素能受体激动剂,EC50 为 5.37 μM。
Norepinephrine (Levarterenol; L-Noradrenaline) CAS号: 51-41-2
产品类别: Adenosine Receptor
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
5g
10g
25g
50g
Other Sizes

Other Forms of Norepinephrine (Levarterenol; L-Noradrenaline):

  • DL-Norepinephrine hydrochloride
  • Ethylnorepinephrine hydrochloride
  • 盐酸去甲肾上腺素
  • 重酒石酸去甲肾上腺素
  • L-去甲肾上腺素酒石酸氢盐(酯)
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
去甲肾上腺素(Levarterenol;L-去甲肾上腺素)是一种有效的 β1 选择性肾上腺素受体激动剂,EC50 为 5.37 μM。去甲肾上腺素是儿茶酚胺家族中的一种有机化学物质,在大脑和身体中作为激素和神经递质发挥作用。它是体内自然产生的化学物质,既充当应激激素又充当神经递质(一种在神经细胞之间发送信号的物质)。当大脑感知到发生了压力事件时,它会作为压力激素释放到血液中。
生物活性&实验参考方法
靶点
α1-adrenergic receptor; α2-adrenergic receptor; Beta-1 adrenergic receptor; Microbial Metabolite; Human Endogenous Metabolite
体外研究 (In Vitro)
去甲肾上腺素 (NE) 通常被认为是 β1-亚型 β1- 开始素能激动剂,β2- 开始素能接收。去甲肾上腺素 (NE) 在上一个下浓度也对 β2- 开始素能接收具有直接活性[1]。来自腹股沟脂肪垫(iWA)或肩肩间脂肪垫(BA)来自新生野生型C57BL/6J 小鼠中分离并培养。为了检查激活AT2对β-首先素能通报信号的影响,首先评估 cAMP 产生对去甲肾上腺素 (NE,10 μM) 有或没有 CGP (10 nM) 联合处理的反应。 去甲肾上腺素 (NE) 增加 cAMP 正如在 iWA 中预期的那样,CGP 不会改变这种效果 去甲肾上腺素 (NE) ) 也已知会诱导脂肪减少,并且需要释放的培养基来功能性激活 UCP1 蛋白质并刺激热量产生。在小鼠 iWA 中,去甲肾上腺素 (NE) 处理后 Ser133 处的 CREB 磷酸化增加,并且与 CGP 联合处理明显分开[3]。
体内研究 (In Vivo)
去甲肾上腺素可用于动物建模,构建动物模型。
细胞实验
皮下前脂肪细胞通过 TERT 和 HPV E6/E7 永生化,该细胞来自一名非糖尿病的 38 岁女性捐赠者。为了促进当前的研究,使用环克隆来分离具有恒定分化能力的稳定二倍体克隆(称为克隆 B)。前脂肪细胞PGM2培养基用于培养细胞。在含有地塞米松、IBMX、吲哚美辛和额外胰岛素的分化培养基中孵育,一旦细胞汇合,就会诱导细胞分化。十天内,细胞分化。用于治疗的培养基在更换为PGM2培养基一天后更换为无血清培养基过夜。 NE (10 μM)、CGP (10 nM)、媒介物或 NE 和 CGP 是对脂肪细胞进行六小时的治疗[2]。
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Norepinephrine localizes mainly in sympathetic nervous tissue. The drug crosses the placenta but not the blood-brain barrier.
Orally ingested norepinephrine is destroyed in the GI tract, and the drug is poorly absorbed after subcutaneous injection. After IV administration, a pressor response occurs rapidly. The drug has a short duration of action, and the pressor action stops within 1-2 minutes after the infusion is discontinued.
Norepinephrine, like epinephrine, is ineffective when given orally and is absorbed poorly from sites of subcutaneous injection. It is rapidly inactivated in the body by the same enzymes that methylate and oxidatively deaminate epinephrine. Small amounts normally are found in the urine. The excretion rate may be greatly increased in patients with pheochromocytoma.
Metabolism / Metabolites
The pharmacologic actions of norepinephrine are terminated primarily by uptake and metabolism in sympathetic nerve endings. The drug is metabolized in the liver and other tissues by a combination of reactions involving the enzymes catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO). The major metabolites are normetanephrine and 3-methoxy-4-hydroxy mandelic acid (vanillylmandelic acid, VMA), both of which are inactive. Other inactive metabolites include 3-methoxy-4-hydroxyphenylglycol, 3,4-dihydroxymandelic acid, and 3,4-dihydroxyphenylglycol. Norepinephrine metabolites are excreted in urine primarily as the sulfate conjugates and, to a lesser extent, as the glucuronide conjugates. Only small quantities of norepinephrine are excreted unchanged.
Uremic toxins tend to accumulate in the blood either through dietary excess or through poor filtration by the kidneys. Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces.
毒性/毒理 (Toxicokinetics/TK)
Toxicity Summary
Uremic toxins such as noradrenalin are actively transported into the kidneys via organic ion transporters (especially OAT3). Increased levels of uremic toxins can stimulate the production of reactive oxygen species. This seems to be mediated by the direct binding or inhibition by uremic toxins of the enzyme NADPH oxidase (especially NOX4 which is abundant in the kidneys and heart) (A7868). Reactive oxygen species can induce several different DNA methyltransferases (DNMTs) which are involved in the silencing of a protein known as KLOTHO. KLOTHO has been identified as having important roles in anti-aging, mineral metabolism, and vitamin D metabolism. A number of studies have indicated that KLOTHO mRNA and protein levels are reduced during acute or chronic kidney diseases in response to high local levels of reactive oxygen species (A7869). Norepinephrine functions as a peripheral vasoconstrictor by acting on alpha-adrenergic receptors. It is also an inotropic stimulator of the heart and dilator of coronary arteries as a result of it's activity at the beta-adrenergic receptors.
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the use of norepinephrine during breastfeeding. Because of its poor oral bioavailability and short half-life, any norepinephrine in milk is unlikely to affect the infant. High intravenous doses of norepinephrine might reduce milk production or milk letdown as well as decrease the concentration of beta-casein in milk.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Norepinephrine inhibits the synthesis of beta-casein via stimulation of adrenergic beta-2 receptors. Animal data indicate that norepinephrine can decrease serum prolactin and reduce milk production, as well as inhibit the release of oxytocin, which inhibits milk ejection.
Interactions
Cyclopropane and halothane anesthetics increase cardiac autonomic irritability and therefore seem to sensitize the myocardium to the action of intravenously administered epinephrine or norepinephrine bitartrate injection. Hence, the use of norepinephrine bitartrate injection during cyclopropane and halothane anesthesia is generally considered contraindicated because of the risk of producing ventricular tachycardia or fibrillation.
Enhanced pressor response may occur in patients taking monoamine oxidase (MAO) inhibitors owing to inhibition of neuronal metabolic degradation.
Administration of furosemide or other diuretics may decrease arterial responsiveness to pressor drugs such as norepinephrine.
Tricyclic antidepressants (e.g., imipramine), some antihistamines (especially diphenhydramine, tripelennamine, and dexchlorpheniramine), parenteral ergot alkaloids, guanethidine, or methyldopa may potentiate the pressor effects of norepinephrine, resulting in severe, prolonged hypertension. Norepinephrine should be given cautiously and in small doses to patients receiving these drugs. Potentiation may result from inhibition of tissue uptake of norepinephrine or by increased adrenoreceptor sensitivity to the drug. Monoamine oxidase (MAO) is one of the enzymes responsible for norepinephrine metabolism. Although some clinicians have reported that MAO inhibitors do not appear to potentiate the effects of norepinephrine to a clinically important extent, the manufacturer states that norepinephrine should be administered with extreme caution to patients receiving an MAO inhibitor because severe, prolonged hypertension may result.
For more Interactions (Complete) data for Norepinephrine (8 total), please visit the HSDB record page.
Non-Human Toxicity Values
LD50 Rat iv 100 ug/kg
LD50 Mouse oral 20 mg/kg
LD50 Mouse ip 6 mg/kg
LD50 Mouse sc 5 mg/kg
LD50 Mouse iv 550 ug/kg
参考文献

[1]. Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther. 2007 Mar;113(3):523-36.

[2]. Relative efficacy and potency of beta-adrenoceptor agonists for generating cAMP in human lymphocytes. Chest. 1996 Jan;109(1):194-200.

[3]. Suppression of Resting Metabolism by the Angiotensin AT2 Receptor. Cell Rep. 2016 Aug 9;16(6):1548-60.

[4]. Binding pathway determines norepinephrine selectivity for the human β 1 AR over β 2 AR. Cell Res. 2021 May;31(5):569-579.

其他信息
Therapeutic Uses
Norepinephrine is used to produce vasoconstriction and cardiac stimulation as an adjunct to correct hemodynamic imbalances in the treatment of shock that persists after adequate fluid volume replacement. /Included in US product label/
Epinephrine is the drug of choice in the emergency treatment of severe acute anaphylactic reactions, including anaphylactic shock. Once adequate ventilation is assured, maintenance of blood pressure in patients with anaphylactic shock may be achieved with other pressor agents, such as norepinephrine. /Included in US product label/
In hypotension associated with myocardial infarction, cautious administration of norepinephrine may be of value and some clinicians consider it to be the pressor drug of choice. However, this type of shock generally has a poor prognosis even when pressor agents are used, and norepinephrine-induced increases in myocardial oxygen demand and the work of the heart may outweigh the beneficial effects of the drug. In addition, cardiac arrhythmias due to the drug are more likely to occur in patients with myocardial infarction. If severe congestive heart failure is also present, dopamine may be preferable because it increases renal blood flow as well as stroke volume. If peripheral vascular resistance is elevated, isoproterenol may be used in conjunction with norepinephrine, but dosage of both drugs must be carefully adjusted according to the specific hemodynamic imbalances present. /Included in US product label/
Norepinephrine may be used to treat hypotension occurring during spinal anesthesia, but other vasopressors having a longer duration of action and which can be administered IM such as metaraminol, methoxamine, or phenylephrine are more commonly used. Norepinephrine may be used to treat hypotension occurring during general anesthesia; however, the possibility of cardiac arrhythmias should be considered. /Included in US product label/
For more Therapeutic Uses (Complete) data for Norepinephrine (7 total), please visit the HSDB record page.
Drug Warnings
Norepinephrine can cause severe peripheral and visceral vasoconstriction, reduced blood flow to vital organs, decreased renal perfusion and therefore decreased urine output, tissue hypoxia, and metabolic acidosis. These effects are most likely to occur in hypovolemic patients. In addition, prolonged use of norepinephrine may cause plasma volume depletion which may result in perpetuation of the shock state or recurrence of hypotension when the drug is discontinued.
Prolonged administration of norepinephrine has caused edema, hemorrhage, focal myocarditis, subpericardial hemorrhage, necrosis of the intestine, or hepatic and renal necrosis. These effects have generally occurred in patients with severe shock and it is not clear if the drug or the shock state itself was the cause.
Norepinephrine can cause tissue necrosis and sloughing at the site of injection as a result of local vasoconstriction. Impairment of circulation and sloughing of tissue may also occur without obvious extravasation. Gangrene of the extremities has been reported rarely and has occurred in a lower extremity when norepinephrine was injected into an ankle vein.
Norepinephrine increases myocardial oxygen consumption and the work of the heart. Cardiac output may be decreased following prolonged use of the drug or administration of large doses because venous return to the heart may be diminished because of increased peripheral vascular resistance. Decreased cardiac output may be especially harmful to elderly patients or those with initially poor cerebral or coronary circulation. Norepinephrine may cause palpitation and bradycardia as well as potentially fatal cardiac arrhythmias, including ventricular tachycardia, bigeminal rhythm, nodal rhythm, atrioventricular dissociation, and fibrillation. Bradycardia may be treated by administration of atropine. Arrhythmias are especially likely to occur in patients with acute myocardial infarction, hypoxia, or hypercapnia, or those receiving other drugs which may increase cardiac irritability such as cyclopropane or halogenated hydrocarbon general anesthetics.
For more Drug Warnings (Complete) data for Norepinephrine (19 total), please visit the HSDB record page.
Pharmacodynamics
Noradrenaline acts on both alpha-1 and alpha-2 adrenergic receptors to cause vasoconstriction. Its effect in-vitro is often limited to the increasing of blood pressure through antagonising alpha-1 and alpha-2 receptors and causing a resultant increase in systemic vascular resistance.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C8H11NO3
分子量
169.1778
精确质量
169.073
元素分析
C, 56.80; H, 6.55; N, 8.28; O, 28.37
CAS号
51-41-2
相关CAS号
Norepinephrine hydrochloride; 329-56-6; Norepinephrine bitartrate monohydrate; 108341-18-0; Norepinephrine tartrate; 51-40-1; (Rac)-Norepinephrine-d3 (formate)
PubChem CID
439260
外观&性状
White to yellow solid powder
密度
1.4±0.1 g/cm3
沸点
442.6±40.0 °C at 760 mmHg
熔点
220-230°C
闪点
221.5±27.3 °C
蒸汽压
0.0±1.1 mmHg at 25°C
折射率
1.659
LogP
-0.88
tPSA
86.71
氢键供体(HBD)数目
4
氢键受体(HBA)数目
4
可旋转键数目(RBC)
2
重原子数目
12
分子复杂度/Complexity
142
定义原子立体中心数目
1
SMILES
OC1=CC=C([C@@H](O)CN)C=C1O
InChi Key
SFLSHLFXELFNJZ-QMMMGPOBSA-N
InChi Code
InChI=1S/C8H11NO3/c9-4-8(12)5-1-2-6(10)7(11)3-5/h1-3,8,10-12H,4,9H2/t8-/m0/s1
化学名
4-[(1R)-2-amino-1-hydroxyethyl]benzene-1,2-diol
别名
Norepinephrine; Noradrenaline; Noradrenalin; Levarterenol; Levophed Arterenol
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: (1). 本产品在运输和储存过程中需避光。  (2). 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~25 mg/mL (~147.8 mM) H2O: < 0.1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.08 mg/mL (12.29 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.08 mg/mL (12.29 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.08 mg/mL (12.29 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 5.9109 mL 29.5543 mL 59.1086 mL
5 mM 1.1822 mL 5.9109 mL 11.8217 mL
10 mM 0.5911 mL 2.9554 mL 5.9109 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
Dopamine vs. Norepinephrine for Hypotension in Very Preterm Infants With Late-onset Sepsis
CTID: NCT05347238
Phase:    Status: Recruiting
Date: 2024-11-08
Effects of Vasopressors on Cerebral Hemodynamics in Patients with Carotid Endarterectomy (TCD Part)
CTID: NCT05665881
Phase: N/A    Status: Completed
Date: 2024-11-05
HIgh Versus STAndard Blood Pressure Target in Hypertensive High-risk Patients Undergoing Major Abdominal Surgery
CTID: NCT05637606
Phase: N/A    Status: Recruiting
Date: 2024-11-01
Management of Postspinal Anesthesia Hypotension During Elective Cesarean Section: Baby Norepinephrine Versus Ephedrine
CTID: NCT06498076
Phase: N/A    Status: Recruiting
Date: 2024-10-23
Hemodynamics During Induction of General Anesthesia After Prophylactic Ephedrine, Phenylephrine or Norepinephrine.
CTID: NCT03864094
Phase: Phase 4    Status: Completed
Date: 2024-10-04
View More

Blood PREssure Augmentation in Large-vessel Occlusion Stroke Study
CTID: NCT04218773
PhaseEarly Phase 1    Status: Enrolling by invitation
Date: 2024-10-03


Vasopressor Outcomes in Spine Surgery
CTID: NCT06053398
PhaseEarly Phase 1    Status: Recruiting
Date: 2024-10-02
Early Neurovascular Adaptations in Aging Women
CTID: NCT06520982
PhaseEarly Phase 1    Status: Recruiting
Date: 2024-10-01
Reducing Cardiac-surgery Associated Acute Kidney Injury Occurence by Administering Angiotensin II
CTID: NCT06615102
Phase: Phase 3    Status: Not yet recruiting
Date: 2024-09-26
Effect of Ephedrine, Phenylepinephrine, and Norepinephrine on Myometrial Contractility in Pregnant People With Type II and Gestational Diabetes During Cesarean Section: An In-vitro Study
CTID: NCT06285396
Phase: N/A    Status: Recruiting
Date: 2024-09-19
Sex Differences in Sympathetic Vascular Reactivity at High Altitude
CTID: NCT05525416
Phase: N/A    Status: Completed
Date: 2024-09-19
GUARDIAN (NCT04884802) Sub-study, Phenylephrine v. Norepinephrine
CTID: NCT04934748
Phase: Phase 4    Status: Enrolling by invitation
Date: 2024-09-19
NE ED90 Bolus in C-Sec
CTID: NCT06574555
Phase: Phase 4    Status: Not yet recruiting
Date: 2024-08-28
Dobutamine for Management of Surgical Patients With Septic Shock
CTID: NCT06462313
Phase: N/A    Status: Recruiting
Date: 2024-07-24
Epinephrine Vs Norepinephrine Infusion During Caesarean Delivery
CTID: NCT06512402
Phase: N/A    Status: Not yet recruiting
Date: 2024-07-22
10 Vs.15 mcg Norepinephrine Bolus in Severe Maternal Hypotension During Cesarean Delivery
CTID: NCT06512415
Phase: N/A    Status: Not yet recruiting
Date: 2024-07-22
--------------
Double blind randomized clinical trial comparing noradrenaline plus placebo versus noradrenaline plus terlipressin in septic shock
CTID: null
Phase: Phase 3    Status: Ongoing
Date: 2021-11-02
Evaluation of pharmacokinetic and –dynamic characteristics of norepinephrine for the augmentation of arterial blood pressure in healthy volunteers prior to and during general anesthesia
CTID: null
Phase: Phase 4    Status: Ongoing
Date: 2021-07-21
A non-randomized experimental study to optically study pharmacodynamic responses in the delivery of vasoactive substances to the skin through iontophoresis in healthy volunteers
CTID: null
Phase: Phase 2    Status: Ongoing
Date: 2019-03-13
Randomized, double-blind, controlled clinical trial for comparison of continuous phenylephrine versus norepinephrine infusion for maintenance of hemodynamic stability during cesarean section under spinal anesthesia
CTID: null
Phase: Phase 4    Status: Completed
Date: 2018-10-18
Individualized perioperative hemodynamic goal-directed therapy in major abdominal surgery (iPEGASUS-trial)
CTID: null
Phase: Phase 4    Status: Ongoing
Date: 2017-08-04
TARGETED TISSUE PERFUSION VERSUS MACROCIRCULATORY-GUIDED
CTID: null
Phase: Phase 2    Status: Completed
Date: 2016-09-29
The effects of different vasopressors on the innate immune response during experimental human endotoxemia, a pilot proof-of-principle study
CTID: null
Phase: Phase 4    Status: Completed
Date: 2016-01-06
Pharmacokinetics of Understudied Drugs Administered to Children per Standard of Care
CTID: null
Phase: Phase 1    Status: Not Authorised
Date: 2015-04-10
Vasopressin vs Noradrenaline as Initial therapy in Septic Shock
CTID: null
Phase: Phase 4    Status: Completed
Date: 2012-12-05
Perioperative Goal Directed Fluid Therapy during Esophageal Resection. A prospective randomized controlled open multi-centre trial to study the effect on postoperative complications
CTID: null
Phase: Phase 4    Status: Completed
Date: 2011-10-11
Optimisation du traitement du choc cardiogénique. Etude pilote physiopathologique ouverte multicentrique comparant l’efficacité et la tolérance de l’adrénaline et la noradrénaline (Optima CC)
CTID: null
Phase: Phase 4    Status: Completed
Date: 2010-03-22
An assessment of the effects of pressors on graft blood flow after free tissue transfer surgery: A randomised study – Part II
CTID: null
Phase: Phase 4    Status: Prematurely Ended
Date: 2010-02-08
Assessment of the effects of pressors on graft blood flow after free tissue transfer surgery
CTID: null
Phase: Phase 4    Status: Completed
Date: 2008-09-24

生物数据图片
  • Norepinephrine (NE) released in the PFC activates different intracellular signaling pathways through distinct adrenoceptors with varying affinities for NE. Pharmacol Ther . 2007 Mar;113(3):523-36.
  • AT2 activation suppresses norepinephrine induced UCP1 in white adipocytes (iWA). Cell Rep . 2016 Aug 9;16(6):1548-1560.
  • Metadynamics simulations reveal different norepinephrine entrance pathway in the β1AR and β2AR. Cell Res . 2021 May;31(5):569-579.
  • Analysis of different residues on the extracellular domain of the receptors that contribute to the different norepinephrine-binding pathway. Cell Res . 2021 May;31(5):569-579.
相关产品
联系我们