Alogliptin benzoate (SYR-322)

别名: SYR-322 benzoate; SYR322; SYR 322; Alogliptin benzoate; Nesina; Kazano; Oseni 阿格列汀苯甲酸盐
目录号: V2553 纯度: ≥98%
阿格列汀苯甲酸盐(SYR-322 苯甲酸盐;Nesina;Kazano,Oseni)是阿格列汀的苯甲酸盐,是一种新型、有效、口服生物可利用的选择性 DPP-4(丝氨酸蛋白酶二肽基肽酶 IV)抑制剂,具有抗糖尿病作用。
Alogliptin benzoate (SYR-322) CAS号: 850649-62-6
产品类别: DPP-4
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
250mg
500mg
1g
2g
5g
10g
25g
Other Sizes

Other Forms of Alogliptin benzoate (SYR-322):

  • Alogliptin-13C,d3 benzoate (alogliptin-13C,d3; SYR-322-13C,d3 benzoate)
  • Alogliptin impurity 7-d3
  • Alogliptin-d3 (SYR-322-d3 (free base))
  • 阿格列汀
  • 阿格列汀 13CD3
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
阿格列汀苯甲酸盐(SYR-322 苯甲酸盐;Nesina;Kazano,Oseni)是阿格列汀的苯甲酸盐,是一种新型、有效、口服生物可利用的选择性 DPP-4(丝氨酸蛋白酶二肽基肽酶 IV)抑制剂,具有抗糖尿病作用影响。它抑制 DPP-4,IC50 值为 2.6 nM,并且对 DPP-4 的选择性比密切相关的 DPP-8 和 DPP-9 高 10,000 倍以上。是2010年在日本上市的抗糖尿病药; 2013 年,FDA 批准了该药物的三种剂型:单独使用的商品名为 Nesina,与二甲双胍联合使用的商品名为 Kazano,与吡格列酮联合使用的商品名为 Oseni。与其他治疗 2 型糖尿病的药物一样,阿格列汀不会降低心脏病发作和中风的风险。阿格列汀和其他格列汀通常与二甲双胍联合用于单独使用二甲双胍无法充分控制糖尿病的患者。
生物活性&实验参考方法
靶点
DPP-4 (IC50 <10 nM)
体外研究 (In Vitro)
体外活性:阿格列汀(也称为 SYR-322)是一种新型、有效、口服生物可利用的选择性 DPP-4(丝氨酸蛋白酶二肽基肽酶 IV)抑制剂,IC50 值为 2.6 nM,其活性大于 10,000 倍。 DPP-4 的选择性高于密切相关的 DPP-8 和 DPP-9。是2010年在日本上市的抗糖尿病药; 2013 年,FDA 批准了该药物的三种剂型:单独使用的商品名为 Nesina,与二甲双胍联合使用的商品名为 Kazano,与吡格列酮联合使用的商品名为 Oseni。与其他治疗 2 型糖尿病的药物一样,阿格列汀不会降低心脏病发作和中风的风险。阿格列汀和其他格列汀通常与二甲双胍联合用于单独使用二甲双胍无法充分控制糖尿病的患者。激酶测定:苯甲酸阿格列汀 (SYR 322) 是一种有效的选择性 DPP-4 抑制剂,IC50 <10 nM,选择性比 DPP-8 和 DPP-9 高 10,000 倍以上。
体内研究 (In Vivo)
阿格列汀(SYR-322)可产生剂量依赖性的葡萄糖耐量改善,并提高雌性 Wistar 脂肪大鼠的血浆胰岛素水平。急性给予阿格列汀会导致血浆 DPP-4 活性显着降低,并增加血浆活性 GLP-1。阿格列汀在 0.3 mg/kg 及更高剂量时可改善葡萄糖耐量,血浆 IRI 呈剂量依赖性增加,表明葡萄糖耐量改善是由于阿格列汀增强胰岛素分泌的能力所致。
酶活实验
DPP-4检测:[1]
在二甲基亚砜(DMSO)中制备不同浓度(≤10mM终浓度)的试验化合物溶液,然后稀释到包含20mM Tris、pH 7.4的测定缓冲液中;20mM氯化钾;将人DPP-4(终浓度为0.1 nM)加入稀释液中,在环境温度下预孵育10分钟,然后用A-P-7-酰胺基-4-三氟甲基香豆素(AP-AFC;终浓度为10μM)引发反应。反应混合物的总体积为10-100μL,具体取决于所使用的测定格式(384或96孔板)。对反应进行动力学跟踪(激发λ=400 nm;发射λ=505 nm)5-10分钟,或在10分钟后测量终点。使用标准数学模型从酶进程曲线计算抑制常数(IC50)。[2]
肝微粒体稳定性:[1]
试验化合物(1μM)在37°C下在含有大鼠或人肝微粒体(1 mg/mL蛋白质)和NADPH(烟酰胺腺嘌呤二核苷酸磷酸盐,还原形式)(4 mM)的磷酸盐缓冲液(50 mM,pH 7.4)中孵育。在0、5、15、30分钟的时间过程中,用三氯乙酸(0.3M)淬灭孵育混合物。将淬火溶液离心,转移上清液进行LC/MS定量。试验化合物的半衰期由化合物随时间变化的稳定性曲线得出。[2]
阿格列汀(也称为 SYR-322)是一种新型、有效、选择性、口服生物可利用的 DPP-4(丝氨酸蛋白酶二肽基肽酶 IV)抑制剂。它的 IC50 值为 2.6 nM,对 DPP-4 的选择性比 DPP-8 和 DPP-9(两种密切相关的酶)高 10,000 倍以上。即使浓度高达 30 μM,阿格列汀也不会阻断 hERG 通道或抑制 CYP-450 酶活性。 Alogliptin Benzate(SYR 322) 是一种有效的选择性 DPP-4 抑制剂,IC50 小于 10 nM。其选择性比 DPP-8 和 DPP-9 高出 10,000 倍以上。
动物实验
The N-STZ-1.5 rats
0.1, 0.3, 1 or 3 mg/kg
p.o.
Neonatally streptozotocin-induced diabetic rats (N-STZ-1.5 rats), a non-obese model of type 2 diabetes, were used in these studies. The effects of alogliptin on DPP-4 activity and glucagon-like peptide 1 (GLP-1) concentration were determined by measuring their levels in plasma. In addition, the effects of alogliptin on an oral glucose tolerance test were investigated by using an SU secondary failure model.
Key findings: Alogliptin dose dependently suppressed plasma DPP-4 activity leading to an increase in the plasma active form of GLP-1 and improved glucose excursion in N-STZ-1.5 rats. Repeated administration of glibenclamide resulted in unresponsiveness or loss of glucose tolerance typical of secondary failure. In these rats, alogliptin exhibited significant improvement of glucose excursion with significant increase in insulin secretion. By contrast, glibenclamide and nateglinide had no effect on the glucose tolerance of these rats.
Significance: The above findings suggest that alogliptin was effective at improving glucose tolerance and therefore overcoming SU induced secondary failure in N-STZ-1.5 rats.[2]
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Absorption
The pharmacokinetics of NESINA was also shown to be similar in healthy subjects and in patients with type 2 diabetes. When single, oral doses up to 800 mg in healthy subjects and type 2 diabetes patients are given, the peak plasma alogliptin concentration (median Tmax) occurred 1 to 2 hours after dosing. Accumulation of aloglipin is minimal. The absolute bioavailability of NESINA is approximately 100%. Food does not affect the absorption of alogliptin.

Route of Elimination
Renal excretion (76%) and feces (13%). 60% to 71% of the dose is excreted as unchanged drug in the urine.

Volume of Distribution
Following a single, 12.5 mg intravenous infusion of alogliptin to healthy subjects, the volume of distribution during the terminal phase was 417 L, indicating that the drug is well distributed into tissues.

Clearance
Renal clearance = 9.6 L/h (this value indicates some active renal tubular secretion); Systemic clearance = 14.0 L/h.

The primary route of elimination of (14C) alogliptin-derived radioactivity occurs via renal excretion (76%) with 13% recovered in the feces, achieving a total recovery of 89% of the administered radioactive dose. The renal clearance of alogliptin (9.6 L/hr) indicates some active renal tubular secretion and systemic clearance was 14.0 L/hr.

Alogliptin does not undergo extensive metabolism and 60% to 71% of the dose is excreted as unchanged drug in the urine.

The absolute bioavailability of NESINA is approximately 100%. Administration of NESINA with a high-fat meal results in no significant change in total and peak exposure to alogliptin. NESINA may therefore be administered with or without food.

Following a single, 12.5 mg intravenous infusion of alogliptin to healthy subjects, the volume of distribution during the terminal phase was 417 L, indicating that the drug is well distributed into tissues. Alogliptin is 20% bound to plasma proteins.
View More

Metabolism / Metabolites
Alogliptin does not undergo extensive metabolism. Two minor metabolites that were detected are N-demethylated alogliptin (<1% of parent compound) and N-acetylated alogliptin (<6% of parent compound). The N-demethylated metabolite is active and an inhibitor of DPP-4. The N-acetylated metabolite is inactive. Cytochrome enzymes that are involved with the metabolism of alogliptin are CYP2D6 and CYP3A4 but the extent to which this occurs is minimal. Approximately 10-20% of the dose is hepatically metabolized by cytochrome enzymes.

Two minor metabolites were detected following administration of an oral dose of [14C] alogliptin, N-demethylated, M-I (<1% of the parent compound), and N-acetylated alogliptin, M-II (<6% of the parent compound). M-I is an active metabolite and is an inhibitor of DPP-4 similar to the parent molecule; M-II does not display any inhibitory activity toward DPP-4 or other DPP-related enzymes. In vitro data indicate that CYP2D6 and CYP3A4 contribute to the limited metabolism of alogliptin. Alogliptin exists predominantly as the (R)-enantiomer (>99%) and undergoes little or no chiral conversion in vivo to the (S)-enantiomer. The (S)-enantiomer is not detectable at the 25 mg dose.


Biological Half-Life
Terminal half-life = 21 hours
At the maximum recommended clinical dose of 25 mg, Nesina was eliminated with a mean terminal half-life of approximately 21 hours.

毒性/毒理 (Toxicokinetics/TK)
Toxicity Summary
IDENTIFICATION AND USE: Alogliptin is a dipeptidyl peptidase-4 (DPP-4) inhibitor indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus; but not for treatment of type 1 diabetes or diabetic ketoacidosis. HUMAN EXPOSURE AND TOXICITY: During clinical trials patients receiving alogliptin 25 mg daily reported adverse reactions including pancreatitis (0.2%), hypersensitivity reactions (0.6%), a single event of serum sickness, nasopharyngitis (4.4%), hypoglycemia (1.5%), headache (4.2%) and upper respiratory tract infection (4.2%). In elderly patients the incidence of hypoglycemia with alogliptin increased to 5.4%. Postmarketing, patients taking alogliptin reported acute pancreatitis and serious hypersensitivity reactions. These reactions include anaphylaxis, angioedema and severe cutaneous adverse reactions, including Stevens-Johnson syndrome. There have been postmarketing reports of fatal and nonfatal hepatic failure in patients taking Nesina. ANIMAL STUDIES: In a fertility study in rats, alogliptin had no adverse effects on early embryonic development, mating or fertility at doses up to 500 mg/kg, or approximately 172 times the clinical dose based on plasma drug exposure (AUC). Alogliptin administered to pregnant rabbits and rats during the period of organogenesis was not teratogenic at doses of up to 200 mg/kg and 500 mg/kg, or 149 times and 180 times, respectively, the clinical dose based on plasma drug exposure (AUC). Doses of alogliptin up to 250 mg/kg (approximately 95 times clinical exposure based on AUC) given to pregnant rats from gestation Day 6 to lactation Day 20 did not harm the developing embryo or adversely affect growth and development of offspring. Placental transfer of alogliptin into the fetus was observed following oral dosing to pregnant rats. Alogliptin is secreted in the milk of lactating rats in a 2:1 ratio to plasma. No drug-related tumors were observed in mice after administration of 50, 150 or 300 mg/kg alogliptin for two years, or up to approximately 51 times the maximum recommended clinical dose of 25 mg, based on AUC exposure. Alogliptin was not mutagenic or clastogenic, with and without metabolic activation, in the Ames test with S. typhimurium and E. coli or the cytogenetic assay in mouse lymphoma cells. Alogliptin was negative in the in vivo mouse micronucleus study.
Hepatotoxicity
Liver injury due to alogliptin is rare. In large clinical trials, serum enzyme elevations were uncommon (1% to 3%) and no greater than with comparator arms or placebo. In these studies, no instances of clinically apparent liver injury with jaundice were reported. Since licensure, instances of serum enzyme elevations and acute hepatitis including acute liver failure attributed to alogliptin have been reported to the FDA and the sponsor. These cases have not been reported in the literature and the clinical features have not been defined. Cases of clinically apparent acute liver injury have been reported with other DPP-4 inhibitors such as sitagliptin and saxagliptin. The latency to onset was typically within 2 to 12 weeks of starting and the pattern of liver enzyme elevations was usually hepatocellular. Immunoallergic features were often present. Most cases were self-limited in course and rapidly reversed once the medication was stopped.
Likelihood score: E* (unproven but suspected cause of acute, idiosyncratic liver injury).
View More

Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the clinical use of alogliptin during breastfeeding. An alternate drug may be preferred, especially while nursing a newborn or preterm infant. Monitoring of the breastfed infant's blood glucose is advisable during maternal therapy with alogliptin.

◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.

◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.


Interactions
When alogliptin is used in combination with an insulin secretagogue (e.g., a sulfonylurea) or insulin, the incidence of hypoglycemia is increased compared with sulfonylurea or insulin monotherapy. Therefore, patients receiving alogliptin may require a reduced dosage of the concomitant insulin secretagogue or insulin to reduce the risk of hypoglycemia.
Protein Binding
Alogliptin is 20% bound to plasma proteins.

参考文献

[1]. J Med Chem . 2007 May 17;50(10):2297-300.

[2]. Life Sci . 2009 Jul 17;85(3-4):122-6.

其他信息
Alogliptin benzoate is a benzoate salt obtained by combining equimolar amounts of alogliptin and benzoic acid. Used for treatment of type 2 diabetes. It has a role as an EC 3.4.14.5 (dipeptidyl-peptidase IV) inhibitor and a hypoglycemic agent. It contains an alogliptin(1+).
Alogliptin Benzoate is the benzoate salt form of alogliptin, a selective, orally bioavailable, pyrimidinedione-based inhibitor of dipeptidyl peptidase 4 (DPP-4), with hypoglycemic activity. In addition to its effect on glucose levels, alogliptin may inhibit inflammatory responses by preventing the toll-like receptor 4 (TLR-4)-mediated formation of proinflammatory cytokines.
See also: Alogliptin (has active moiety); Alogliptin Benzoate; Pioglitazone Hydrochloride (component of); Alogliptin Benzoate; METformin Hydrochloride (component of).
Drug Indication
Vipidia is indicated in adults aged 18 years and older with type 2 diabetes mellitus to improve glycaemic control in combination with other glucose lowering medicinal products including insulin, when these, together with diet and exercise, do not provide adequate glycaemic control (see sections 4. 4, 4. 5 and 5. 1 for available data on different combinations).
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C25H27N5O4
分子量
461.51
精确质量
461.206
元素分析
C, 65.06; H, 5.90; N, 15.17; O, 13.87
CAS号
850649-62-6
相关CAS号
Alogliptin;850649-61-5;Alogliptin-13C,d3 benzoate; Alogliptin Benzoate;850649-62-6;Alogliptin-d3;1133421-35-8;Alogliptin-13C,d3 benzoate;Alogliptin-13C,d3;1246817-18-4
PubChem CID
16088021
外观&性状
White to off-white solid powder
沸点
671.2ºC at 760 mmHg
闪点
359.7ºC
LogP
2.544
tPSA
134.35
氢键供体(HBD)数目
2
氢键受体(HBA)数目
7
可旋转键数目(RBC)
4
重原子数目
34
分子复杂度/Complexity
726
定义原子立体中心数目
1
SMILES
C(C1C=CC=CC=1)(=O)O.C(C1C=CC=CC=1C#N)N1C(=O)N(C)C(=O)C=C1N1CCC[C@@H](N)C1
InChi Key
KEJICOXJTRHYAK-XFULWGLBSA-N
InChi Code
InChI=1S/C18H21N5O2.C7H6O2/c1-21-17(24)9-16(22-8-4-7-15(20)12-22)23(18(21)25)11-14-6-3-2-5-13(14)10-19;8-7(9)6-4-2-1-3-5-6/h2-3,5-6,9,15H,4,7-8,11-12,20H2,1H3;1-5H,(H,8,9)/t15-;/m1./s1
化学名
2-[[6-[(3R)-3-aminopiperidin-1-yl]-3-methyl-2,4-dioxopyrimidin-1-yl]methyl]benzonitrile;benzoic acid
别名
SYR-322 benzoate; SYR322; SYR 322; Alogliptin benzoate; Nesina; Kazano; Oseni
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: >10 mM
Water: N/A
Ethanol: N/A
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 1.25 mg/mL (2.71 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 12.5 mg/mL澄清的DMSO储备液加入到400 μL PEG300中,混匀;再向上述溶液中加入50 μL Tween-80,混匀;然后加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 1.25 mg/mL (2.71 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 12.5 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 1.25 mg/mL (2.71 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 12.5 mg/mL 澄清 DMSO 储备液加入900 μL 玉米油中,混合均匀。


配方 4 中的溶解度: 0.5% methylcellulose: 30 mg/mL

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.1668 mL 10.8340 mL 21.6680 mL
5 mM 0.4334 mL 2.1668 mL 4.3336 mL
10 mM 0.2167 mL 1.0834 mL 2.1668 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02756832 Completed Drug: Alogliptin Benzoate Diabetes Mellitus Takeda September 20, 2016
NCT04980040 Completed Drug: Alogliptin Benzoate Type 2 Diabetes Mellitus Takeda April 19, 2014
NCT02856113 Completed Drug: Alogliptin Benzoate
Drug: Placebo
Diabetes Mellitus, Type 2 Takeda October 14, 2016 Phase 3
NCT01990300 Completed Drug: Alogliptin/Pioglitazone Type 2 Diabetes Mellitus Takeda November 28, 2011
NCT02798172 Completed Drug: Alogliptin and Metformin Diabetes Mellitus, Type 2 Fourth People's Hospital of
Shenyang
May 2014 Not Applicable
生物数据图片
相关产品
联系我们