Orteronel (racemic)

别名: TAK700; TAK-700; 6-(7-hydroxy-6,7-dihydro-5H-pyrrolo[1,2-c]imidazol-7-yl)-N-methyl-2-naphthamide; 426219-18-3; 426219-32-1; TAK-700; TAK-700 (Orteronel); 426219-23-0; Orteronel (racemate); TAK700; Orteronel; 566939-85-3; (S)-Orteronel; (S)-6-(7-hydroxy-6,7-dihydro-5H-pyrrolo[1,2-c]imidazol-7-yl)-N-methyl-2-naphthamide; TAK700; UE5K2FNS92; TAK 700 racemate 6-(6,7-二氢-7-羟基-5H-吡咯并[1,2-C]咪唑-7-基)-N-甲基-2-萘甲酰胺; 6-(6,7-二氢-7-羟基-5H-吡咯并[1,2-c]咪唑-7-基)-n-甲基-2-萘羧酰胺;6-[7-羟基-6,7-二氢-5H-吡咯并[1,2-C]咪唑-7-基]-N-甲基-2-萘甲酰胺; TAK-700 (Orteronel)
目录号: V4600 纯度: ≥98%
Orteronel 外消旋体,Orteronel 的 S-对映体和 R-对映体的混合物(也称为 TAK-700),是一种新型、有效、高选择性、口服生物可利用的人 17,20-裂合酶抑制剂的非甾体雄激素合成抑制剂, IC50 为 38 nM,其选择性比其他 CYP(例如 CYP)高 1000 倍以上。
Orteronel (racemic) CAS号: 426219-18-3
产品类别: P450 (e.g. CYP)
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Orteronel (racemic):

  • TAK-700/Orteronel (s-isomer)
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
Orteronel 外消旋体,Orteronel 的 S-对映体和 R-对映体的混合物(也称为 TAK-700),是一种新型、有效、高选择性、口服生物可利用的人 17,20-裂解酶的非甾体雄激素合成抑制剂抑制剂,IC50 为 38 nM,其选择性比其他 CYP(例如 11-羟化酶和 CYP3A4)高 1000 倍。 TAK-700 通过结合并抑制睾丸和肾上腺中的类固醇 17α-单加氧酶,从而抑制雄激素的产生,从而具有潜在的抗雄激素活性。这可能会减少雄激素依赖性生长信号传导,并可能抑制雄激素依赖性肿瘤细胞的细胞增殖。
生物活性&实验参考方法
靶点
17,20-lyase/CYP17
体外研究 (In Vitro)
体外活性:在体外,TAK-700 对大鼠和人类固醇 17,20-裂合酶显示出有效的抑制活性,IC50 分别为 54 nM 和 38 nM。而其他 CYP 同工型(包括 11-羟化酶和 CYP3A4)不受 TAK-700 的显着影响。在表达人 CYP 同工型的微粒体中,与其他 CYP 同工型相比,TAK-700 对 17,20-裂解酶表现出更大的抑制作用,IC50 为 19 nM。 TAK-700 对猴 17,20-裂解酶和 17-羟化酶具有抑制活性,IC50 分别为 27 nM 和 38 nM。在猴肾上腺细胞中,TAK-700 抑制 ACTH 刺激的 DHEA 和雄烯二酮的产生,IC50 分别为 110 nM 和 130 nM。此外,TAK-700 还可有效抑制人肾上腺皮质肿瘤系 H295R 细胞中 DHEA 的产生,IC50 为 37 nM。激酶测定:根据先前描述的侧链裂解活性的方法并进行一些修改来测量大鼠11-羟化酶活性。反应混合物含有200mM甘露醇、4.5mM HEPES、2.3mM磷酸钾(pH 7.4)、0.1mM EDTA·2K、0.03%BSA(结晶)、4.5mM NADPH、11mM氯化钙、4μg线粒体蛋白、 10 nM [1,2-3H]-羟基-11-脱氧皮质酮(11-脱氧皮质醇)(NEN,溶解在 0.02% Tween-80 中)和 1-1000 nM 测试化合物,总体积为 150 μL。试剂的浓度表示为反应混合物中的最终浓度。将测试化合物用二甲基甲酰胺连续稀释,并将1.5μL直接添加至反应混合物中。 37°C 孵育 30 分钟后,加入 400 μL 乙酸乙酯和 100 μL 蒸馏水终止反应,然后涡旋 30 秒并短暂离心。将三百微升有机相转移至新管中并使用氮气蒸发直至干燥。将类固醇用 30 μL 乙酸乙酯溶解,并将整个体积涂在硅胶 TLC 板上。底物和产物(11-脱氧皮质醇和皮质醇)在甲苯-丙酮(7:2)溶剂体系中分离。细胞测定:在猴肾上腺细胞中,orteronel 抑制 ACTH 刺激的 DHEA 和雄烯二酮的产生,IC50 分别为 110 nM 和 130 nM。此外,Orteronel 还有效抑制人肾上腺皮质肿瘤系 H295R 细胞中 DHEA 的产生,IC50 为 37 nM。在体外,orteronel 对大鼠和人类固醇 17,20-裂合酶显示出有效的抑制活性,IC50 分别为 54 nM 和 38 nM。而其他 CYP 亚型,包括 11-羟化酶和 CYP3A4,则不受 Orteronel 的显着影响。在表达人 CYP 同工型的微粒体中,与其他 CYP 同工型相比,Orteronel 对 17,20-裂解酶表现出更大的抑制作用,IC50 为 19 nM。
体内研究 (In Vivo)
在食蟹猴中,口服 1 mg/kg 剂量的 TAK-700 可显着降低血清睾酮和脱氢表雄酮 (DHEA) 水平。以 1 mg/kg 剂量口服 TAK-700 可产生良好的药代动力学参数,Tmax、Cmax、t1/2 和 AUC0-24 小时分别为 1.7 小时、0.147 μg/mL、3.8 小时和 0.727 μg·h/mL,分别。
酶活实验
猴17,20-裂合酶/17-羟化酶抑制活性测定[1]
17,20-裂合酶抑制活性如所述进行了一些修改。从两只完整的5岁雄性食蟹猴身上切下的肾上腺在10 mmol/L HEPES缓冲液(pH 7.4)中均质化,该缓冲液含有250 mmol/L蔗糖、25 mmol/L KCl、0.5 mM EDTA 2 K、1 mmol/L二硫苏糖醇、0.02 mg/mL苯甲基磺酰氟和20%(v/v)甘油。然后通过离心分离肾上腺微粒体,并将其悬浮在含有5 mmol/L MgCl2和25%(v/v)甘油的50 mmol/L Tris·Cl缓冲液(pH 7.4)中。使用Bio-Rad蛋白质测定试剂盒(Hercules,CA,USA)测定微粒体部分的蛋白质浓度。为了评估类固醇生物合成,反应混合物含有50 mmol/L Tris-HCl缓冲液(pH 7.4)、5μmol/L 17-α-羟基孕烯醇酮,包括相当于0.05μL/管17-α羟基-[1,2(n)-3H]-孕烯醇酮(1 mCi/mL,41.9 Ci/mmol)、NADPH生成系统(0.6 mmol/Lβ-NADP+,10 mmol/L葡萄糖-6-磷酸,5 mmol/L氯化镁,1.5单位/mL G-6-P脱氢酶)、2.5%(v/v)丙二醇、微粒体蛋白(50μG/mL,终浓度)和总体积为使用200μL。将反应混合物在37°C下孵育120分钟。在己烷:四氢呋喃(4:1)溶剂体系中,通过薄层色谱(TLC,Whatman LHPK)分离反应底物和产物(DHEA、雄烯二酮)。使用BAS 2000 II生物图像分析仪对TLC板上的适当区域进行鉴定并测量放射性,酶活性表示为nmol/h/mg蛋白质。 17-羟化酶活性的测定与上述类似。5μmol/L孕烯醇酮(ICN Biomedicals),包括相当于0.05μL/管[7-3H(N)]孕烯醇酮的当量(1 mCi/mL,17.5 Ci/mmol),取代17-α-羟基雷公藤酮作为底物,将反应混合物温育5分钟。在环己烷:乙酸乙酯(3:2)溶剂系统中,通过TLC分离底物和产物(17-α-Hydrophenolone,17α-羟基孕酮(17-OHP),DHEA,雄烯二酮,脱氧皮质醇),并如上所述测定和表示活性。
11-羟化酶活性测定[1]
根据其他地方描述的方法,经过一些修改后,测定了对猴11-羟化酶的抑制活性。如上所述切除肾上腺。通过离心制备肾上腺线粒体,并将其悬浮在含有5 mmol/L MgCl2的50 mmol/L Tris·Cl缓冲液(pH 7.4)中。使用Bio-Rad蛋白质测定试剂盒(Hercules,CA,USA)测定线粒体部分的蛋白质浓度。反应混合物含有50 mmol/L Tris-HCl缓冲液(pH 7.4)、2μmol/L 11-脱氧皮质醇(美国康涅狄格州普法尔茨和鲍尔公司),包括相当于0.05μL/管羟基-11-脱氧皮质酮、[1,2-3H(N)](NEN,56.8 Ci/mmol)、NADPH生成系统(0.6 mmol/Lβ-NADP+,10 mmol/L葡萄糖-6-磷酸,5 mmol/L氯化镁,1.5单位/mL G-6-P脱氢酶)、10 mmol/L氯化钙、5%(v/v)丙二醇、线粒体蛋白(50μG/mL,终浓度)和总体积为200μL。将反应混合物在37°C下孵育120分钟。底物和产物(3H-皮质醇)在甲苯-丙酮(3.5:1)溶剂体系中分离。所有其他程序均如上所述进行,活性以nmol/h/mg蛋白质表示。
细胞实验
控制性腺雄激素生物合成的手术或药物方法是治疗各种非肿瘤性和肿瘤性疾病的有效途径。例如,雄激素消融及其导致的循环睾酮水平的降低是晚期前列腺癌的有效治疗方法。不幸的是,这种方法的治疗效果往往是暂时的,因为疾病进展到“去势抵抗”(CRPC)状态,这种情况下的治疗选择有限。一种被认为是导致CRPC发生的机制是生殖腺外雄激素的合成以及这些残留的生殖腺外雄激素对前列腺肿瘤细胞增殖的影响。负责合成性腺外雄激素的一个重要酶是CYP17A1,它具有17,20-裂解酶和17-羟化酶的催化活性,其中17,20-裂解酶的活性是雄激素生物合成过程的关键。Orteronel (TAK-700)是一种新型的,选择性的,有效的17,20-裂解酶抑制剂,作为一种抑制雄激素合成的药物正在开发中。在本研究中,我们通过评估其对阉割和完整雄性食环猴口服给药后对CYP17A1酶活性、猴肾上腺细胞和人肾上腺肿瘤细胞中类固醇生成以及血清脱氢表雄酮(DHEA)、皮质醇和睾酮水平的影响,量化了orteronel对睾丸和肾上腺雄激素产生的抑制活性和特异性。我们报道,奥特龙能有效抑制猴子肾上腺细胞雄激素的产生,但仅微弱地抑制皮质酮和醛固酮的产生;奥特罗内酯对皮质醇的IC(50)值比对DHEA的IC(50)值高3倍。单次口服给药后,完整食蟹猴的血清脱氢表雄酮、皮质醇和睾酮水平迅速被抑制。在被阉割的猴子中,每天用奥特罗奈治疗两次,在整个治疗期间,DHEA和睾酮的抑制持续存在。在体内模型和与我们的体外数据一致,口服给药后血清皮质醇水平的抑制低于DHEA。在人CYP17A1和人肾上腺肿瘤细胞中,在无细胞酶测定中,orteronel抑制17,20-裂解酶活性的效力是17-羟化酶活性的5.4倍,在人肾上腺肿瘤细胞中,DHEA产生的效力是皮质醇产生的27倍,这表明在人与猴子中,17,20-裂解酶和17-羟化酶活性的抑制具有更大的特异性。综上所述,奥特罗内酯能有效抑制猴和人体内CYP17A1的17,20裂解酶活性,降低猴体内血清雄激素水平。这些发现表明,对于雄激素抑制至关重要的疾病,如雄激素敏感和CRPC,奥特罗奈可能是一种有效的治疗选择。[1]
动物实验
Pharmacokinetic study[1]
[14C]orteronel was suspended in 0.5% methylcellulose solution for oral administration to fed monkeys at a dose of 1 mg (183 μCi)/kg. For intravenous dosing, [14C]orteronel was dissolved in a mixture of dimethyl acetamide and physiological saline (1:4 by vol.) for injection at a dose of 0.5 mg (91 μCi)/kg (weight, 2.38–3.08 kg). At 5, 10 (intravenous dosing only), 15, 30 min, and 1, 2, 3, 4, 6, 8, and 24 h after drug administration, blood was taken from the femoral vein and centrifuged to obtain plasma that was then frozen at −20 °C until analysis. To quantify plasma [14C]orteronel, plasma was extracted with methanol (5 vol.) and then evaporated to dryness under a nitrogen gas stream at room temperature. The residue was dissolved in 80% (by vol.) aqueous methanol. The solution components were separated using TLC plates pre-coated with silica gel 60F254 (0.25-mm thick), which were developed one-dimensionally in chloroform–methanol–28% ammonia water (10:4:0.2, by vol.). After development, the radioactive regions on the plate were located by radioluminography using a Bio-image Analyzer (BAS-2000 or BAS-2000II) and imaging plate (BAS III; Fuji Photo Film Co., Ltd.), or by the UV absorption of orteronel added to the test samples as internal standards, or both. The silica gel sections corresponding to orteronel were scraped off the plate, the radioactivity of each section determined by liquid scintillation, and the concentration of orteronel was calculated from the specific radioactivity. Values for maximum plasma concentration (Cmax) and time to reach Cmax (Tmax) were calculated directly from the data. Half life (t1/2) in the plasma and area under the plasma concentration time curve (AUC) were calculated by the linear regression analysis and trapezoidal rule, respectively, using Microsoft Excel’ 95. The bioavailability (BA) was determined after dose normalization. The pharmacokinetic parameters for [14C]orteronel in the plasma were expressed as the mean values or the mean values with standard deviations (SD) for the results of three animals, unless otherwise indicated.[1]
Dosing and blood sampling in pharmacodynamic studies[1]
In all oral dosing experiments, serum DHEA and testosterone were measured by RIA (as described above) before dosing to establish baseline values.[1]
In the single dose experiment, 20 monkeys were randomly distributed into 5 groups (n = 4). Each group received a different dose of orteronel or vehicle (0.5% methylcellulose, 3 mL/kg). For oral administration, orteronel was suspended in 0.5% methylcellulose and administered at doses of 0.3, 1, 3, or 10 mg/kg at 10 a.m. Blood samples were collected 48, 24 h, and immediately before dosing, and 2, 5, 10, 24, and 48 h after dosing and the serum was stored at −30 °C.[1]
For the multiple dose experiment, 20 monkeys were randomly distributed into 4 groups (n = 5). Each group received a different orteronel dose. Orteronel was suspended in 0.5% methylcellulose and administered orally for 7 days at doses of 3, 7.5, and 15 mg/kg twice daily at about 10 a.m. and 10 p.m. for the first 6 days, and once at about 10 a.m. on the last day; one group received vehicle (0.5% methylcellulose, 3 mL/kg) only. Blood samples were collected twice daily (at approximately 2 p.m. and 7 p.m., to compensate for circadian variations) from 3 days before the onset of dosing until 9 h after the final dose. After collection, the serum was stored at −30 °C.[1]
A multiple dosing study was also conducted in castrated male monkeys. For this study, six castrated monkeys were divided into 2 groups (n = 3), with each group receiving a different orteronel dose. Orteronel was suspended in 0.5% methylcellulose and administered orally (3 mL/kg) for 7 days at either 7.5 or 15 mg/kg twice daily (about 8 a.m. and 8 p.m.) for the first 6 days and once at about 8 a.m. on the final day. Blood samples were collected twice daily (at approximately 12 p.m. and 5 p.m.) from 3 days before the onset of dosing until 9 h after the final administration of orteronel. Approximately 1 month following the final orteronel dose, five of the six castrated monkeys received vehicle alone (0.5% (w/v) methylcellulose solution, 3 mL/kg) by the same administration regimen employed to administer orteronel, and whole blood was collected and serum processed as described during orteronel dosing. As such, baseline data were collected 1 month following orteronel dosing to avoid the possibility that oral administration alone affects the hormonal circadian patterns. Steroid concentrations in all serum samples were measured by RIA as described previously.
Dissolved in 0.5% methylcellulose; ≤1 mg/kg; Oral gavage
Adult male cynomolgus monkeys.
药代性质 (ADME/PK)
[14C]orteronel was administered orally to intact monkeys for pharmacokinetic analysis. When a 1 mg/kg dose was administered, the Tmax, Cmax, t1/2 and AUC0–24 h were observed to be 1.7 h, 0.147 μg/mL, 3.8 h and 0.727 μg h/mL, respectively (Table 2). Collectively, orteronel showed high BA and reasonable t1/2 which are important parameters for oral dosing. Considering that concentrations >300 nmol/L (>0.1 μg/mL) were observed to be required to inhibit DHEA production in vitro in monkey adrenal cells (Fig. 2A), twice-daily oral dosing at 5–15 mg/kg was predicted to give minimum trough orteronel levels to maintain 17,20-lyase inhibition and produce a substantial reduction of serum DHEA levels (assuming linear pharmacokinetic characteristics).[1]
参考文献
[1]. J Steroid Biochem Mol Biol.2012 Apr;129(3-5):115-28.
[2]. Bioorg Med Chem.2011 Nov 1;19(21):6383-99;
其他信息
6-(7-hydroxy-5,6-dihydropyrrolo[1,2-c]imidazol-7-yl)-N-methyl-2-naphthalenecarboxamide is a naphthalenecarboxamide.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C18H17N3O2
分子量
307.35
精确质量
307.132
元素分析
C, 70.34; H, 5.58; N, 13.67; O, 10.41
CAS号
426219-18-3
相关CAS号
426219-18-3 (racemic);566939-85-3 (s-isomer);
PubChem CID
9883029
外观&性状
Solid powder
密度
1.4±0.1 g/cm3
沸点
685.1±45.0 °C at 760 mmHg
闪点
368.2±28.7 °C
蒸汽压
0.0±2.2 mmHg at 25°C
折射率
1.695
LogP
-0.13
tPSA
67.15
氢键供体(HBD)数目
2
氢键受体(HBA)数目
3
可旋转键数目(RBC)
2
重原子数目
23
分子复杂度/Complexity
471
定义原子立体中心数目
0
SMILES
O=C(NC)C1=CC=C2C=C(C3(O)CCN4C=NC=C43)C=CC2=C1
InChi Key
OZPFIJIOIVJZMN-UHFFFAOYSA-N
InChi Code
InChI=1S/C18H17N3O2/c1-19-17(22)14-3-2-13-9-15(5-4-12(13)8-14)18(23)6-7-21-11-20-10-16(18)21/h2-5,8-11,23H,6-7H2,1H3,(H,19,22)
化学名
6-(7-hydroxy-5,6-dihydropyrrolo[1,2-c]imidazol-7-yl)-N-methylnaphthalene-2-carboxamide
别名
TAK700; TAK-700; 6-(7-hydroxy-6,7-dihydro-5H-pyrrolo[1,2-c]imidazol-7-yl)-N-methyl-2-naphthamide; 426219-18-3; 426219-32-1; TAK-700; TAK-700 (Orteronel); 426219-23-0; Orteronel (racemate); TAK700; Orteronel; 566939-85-3; (S)-Orteronel; (S)-6-(7-hydroxy-6,7-dihydro-5H-pyrrolo[1,2-c]imidazol-7-yl)-N-methyl-2-naphthamide; TAK700; UE5K2FNS92; TAK 700 racemate
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 61 mg/mL (198.5 mM)
Water:<1 mg/mL
Ethanol: 8 mg/mL (26.0 mM)
制备储备液 1 mg 5 mg 10 mg
1 mM 3.2536 mL 16.2681 mL 32.5362 mL
5 mM 0.6507 mL 3.2536 mL 6.5072 mL
10 mM 0.3254 mL 1.6268 mL 3.2536 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
S1216, Phase III ADT+TAK-700 vs. ADT+Bicalutamide for Metastatic Prostate Cancer
CTID: NCT01809691
Phase: Phase 3
Status: Active, not recruiting
Date: 2023-11-14
Hormone Therapy, Radiation Therapy, and Steroid 17alpha-monooxygenase TAK-700 in Treating Patients With High-Risk Prostate Cancer
CTID: NCT01546987
Phase: Phase 3
Status: Active, not recruiting
Date: 2023-04-18
NaF Positron Emission Tomography/Computed Tomography (PET/CT)Imaging to Assess Treatment Responsiveness to TAK-700 in Patients With Castrate Resistant Prostate Cancer (CRPC) With Bone Metastasis
CTID: NCT01816048
Phase: Phase 2
Status: Terminated
Date: 2019-12-09
A Phase 1b Study of TAK-700 in Postmenopausal Women With Hormone-receptor Positive Metastatic Breast Cancer
CTID: NCT01808040
Phase: Phase 1
Status: Completed
Date: 2019-11-18
Study of TAK-700 in Combination With Docetaxel and Prednisone in Men With Metastatic Castration-Resistant Prostate Cancer
CTID: NCT01084655
Phase: Phase 1/Phase 2
Status: Completed
Date: 2019-07-30
生物数据图片
相关产品
联系我们