Dabigatran Etexilate

别名: BIBR 1048; BIBR953; Pradaxa;BIBR1048; BIBR-1048; BIBR 953; BIBR-953; Prazaxa 达比加群酯; 达比甲群酯; N-[2-[4-[N-(己氧基羰基)氨基]苯氨基甲基]-1-甲基-1H-苯并咪唑-5-基羰基]-N-(2-吡啶)-beta-丙氨酸乙酯; 达比加群酯标准品; 达比加群酯及其中间体;达比加群酯杂质; 达比加群酯自由碱(达比加群酯); 甲磺酸达比加群酯
目录号: V1849 纯度: ≥98%
Dabigatran Etexilate(BIBR-1048) 是达比加群的前药,用作凝血酶抑制剂,用于治疗血栓。
Dabigatran Etexilate CAS号: 211915-06-9
产品类别: Thrombin
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10mg
25mg
50mg
100mg
250mg
500mg
1g
Other Sizes

Other Forms of Dabigatran Etexilate:

  • Dabigatran-d3 (BIBR 953-d3; BIBR 953ZW-d3)
  • Dabigatran-13C6 (BIBR 953-13C6; BIBR 953ZW-13C6)
  • Dabigatran acyl-β-D-glucuronide-d3 TFA
  • Dabigatran-d4 hydrochloride (Dabigatran D4 hydrochloride; BIBR-953-d4 hydrochloride)
  • Dabigatran etexilate-d13 (dabigatran etexilate-d13)
  • 达比加群
  • 甲磺酸达比加群酯
  • 达比加群乙酸乙酯
  • 达比加群酯杂质B
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
Dabigatran Etexilate (BIBR-1048) 是达比加群的前药,用作凝血酶抑制剂,用于治疗血栓。它是一种有效的非肽小分子,通过与凝血酶分子的活性位点结合,特异性地、可逆地抑制游离和凝块结合的凝血酶。达比加群(也称为 IBR 953)是一种有效的非肽凝血酶抑制剂,在无细胞测定中 IC50 为 9.3 nM。由于其高极性、两性离子性质和口服吸收差,达比加群被设计为转化为口服活性前药 BIBR 1048。达比加群以竞争性方式抑制凝血酶。
生物活性&实验参考方法
靶点
Thrombin
体外研究 (In Vitro)
体外活性:达比加群选择性且可逆地抑制人凝血酶(Ki:4.5 nM)以及凝血酶诱导的血小板聚集(IC50:10 nM),同时对其他血小板刺激剂没有抑制作用。达比加群选择性且可逆地抑制人凝血酶 (Ki: 4.5 nM) 以及凝血酶诱导的血小板聚集 (IC50: 10 nM),同时对其他血小板刺激剂没有抑制作用。达比加群抑制贫血小板血浆 (PPP) 中的凝血酶生成,IC50 为 0.56 μM,以内源性凝血酶电位 (ETP) 测量。达比加群在体外对多种物种具有浓度依赖性抗凝作用,在浓度为 0.23、0.83 和 0.18 μM 时,人 PPP 中的活化部分凝血活酶时间 (aPTT)、凝血酶原时间 (PT) 和 ecarin 凝血时间 (ECT) 分别加倍。
体内研究 (In Vivo)
大鼠(0.3、1和3 mg/kg)和恒河猴(0.15、0.3和0.6 mg/kg)静脉注射后,达比加群以剂量依赖性方式延长aPTT。与依诺肝素相比,达比加群酯(20 mg/kg,口服)对猪的 K 值延长较小,角度和最大幅度降低较小。达比加群 (0.01-0.1 mg/kg) 减少血栓形成呈剂量依赖性,ED50(有效剂量的 50%)为 0.033 mg/kg,在 0.1 mg/kg 时完全抑制。达比加群酯 (5-30 mg/kg) 以剂量和时间依赖性方式抑制血栓形成,在预处理后 30 分钟内达到最大抑制,表明作用迅速起效。
动物实验
Male rats (280-350 g) and rhesus monkeys of either sex (3-8 kg)
10, 20 and 50 mg/kg for rats and 1, 2.5 and 5 mg/kg for monkeys
Oral
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Oral dabigatran has a bioavailability of 3-7%, although the relative bioavailability of dabigatran pellets is 37% higher than that for capsules and the bioavailability increases to 75% when the capsule shell is removed; dabigatran capsules should not be tampered with in any way prior to administration. The Cmax is achieved by one hour following oral dosing, which is extended to two hours if accompanied by a high-fat meal. Dabigatran can be taken with or without food. Dabigatran pharmacokinetics are approximately linear over a range of 10-400 mg in healthy adults and adult patients and it has an accumulation factor of two in adult and pediatric patients.
Dabigatran is primarily eliminated in the urine. Following oral administration of radiolabeled dabigatran, 7% of the radioactivity is recovered in urine and 86% is recovered in feces.
Dabigatran has a volume of distribution of 50-70L.
Following intravenous administration, renal clearance constitutes ~80% of total dabigatran clearance.
Metabolism / Metabolites
Dabigatran is administered as the orally available prodrug dabigatran etexilate that is subsequently metabolized to the active form. _In vitro_ studies and observations regarding the oral bioavailability and levels of plasma prodrug suggest extensive first-pass metabolism by carboxylesterases, first by intestinal CES2 to form BIBR0951 (also known as M2) and then subsequently by hepatic CES1 to form [dabigatran]. Dabigatran etexilate can also first undergo CES1-mediated hydrolysis to BIBR1087 (M1) followed by CES2-mediated hydrolysis to [dabigatran], though it is hypothesized that the former pathway accounts for most of the active form in plasma. Dabigatran can undergo 1-_O_-acyl glucuronidation by UGT1A9, UGT2B7, and UGT2B15 followed by acyl migration to form the corresponding 2-_O_-, 3-_O_-, and 4-_O_-acyl glucuronides; all of these acyl glucuronides exhibit activity similar to [dabigatran] but account for a small fraction of recovered metabolites. In addition to these better characterized metabolic pathways, detailed LC/MS characterization suggests a wide variety of possible metabolites following oral or intravenous administration, most of which are present in only trace amounts in plasma, urine, or feces. These include a variety of oxidation, hydrolysis, and conjugation products, including through the addition of mannitol.
Biological Half-Life
Dabigatran has a half-life of 12-17 hours in adult patients and 12-14 hours in pediatric patients.
毒性/毒理 (Toxicokinetics/TK)
Protein Binding
Dabigatran is ~35% bound to plasma proteins, including human serum albumin.
参考文献

[1]. Thromb Haemost . 2007 Jul;98(1):155-62.

[2]. J Thorac Cardiovasc Surg . 2011 Jun;141(6):1410-6.

[3]. Thromb Haemost . 2007 Aug;98(2):333-8.

其他信息
Dabigatran etexilate is an oral prodrug that is hydrolyzed to the competitive and reversible direct thrombin inhibitor [dabigatran]. Dabigatran etexilate may be used to decrease the risk of venous thromboembolic events in patients in whom anticoagulation therapy is indicated. In contrast to warfarin, because its anticoagulant effects are predictable, lab monitoring is not necessary. Dabigatran etexilate was approved by the FDA in 2010.
A THROMBIN inhibitor which acts by binding and blocking thrombogenic activity and the prevention of thrombus formation. It is used to reduce the risk of stroke and systemic EMBOLISM in patients with nonvalvular atrial fibrillation.
See also: Dabigatran (has active moiety); Dabigatran Etexilate Mesylate (has salt form).
Drug Indication
Dabigatran etexilate is available in both oral pellet and capsule form. Dabigatran etexilate pellets are indicated for the treatment of venous thromboembolic events (VTE) in pediatric patients between three months and 12 years of age who have been treated with a parenteral anticoagulant for at least 5 days. They are also indicated in the same age group to reduce the risk of recurrence of VTE in patients who have been previously treated. In capsule form, dabigatran etexilate is indicated in adults to reduce the risk of stroke and systemic embolism associated with non-valvular atrial fibrillation and for the treatment of deep venous thrombosis (DVT) and pulmonary embolism (PE) in patients who have been treated with a parenteral anticoagulant for 5-10 days. It is also indicated in adults to reduce the risk of recurrence of DVT and PE in patients who have been previously treated and for the prophylaxis of DVT and PE in patients who have undergone hip replacement surgery. Lastly, it is indicated in pediatric patients between eight and 18 years of age for the treatment of venous thromboembolic events (VTE) in patients who have been treated with a parenteral anticoagulant for at least 5 days and to reduce the risk of recurrence of VTE in patients who have been previously treated. Dabigatran etexilate is also approved by the EMA to prevent VTE in adult patients. For pediatric patients, Dabigatran etexilate is used to treat TVE and prevent recurrent TVE for patients from birth to less than 18 years of age.
FDA Label
Mechanism of Action
Hemostasis is a complex process that balances coagulation to prevent excessive thrombus formation or excessive bleeding. Central to the coagulation process is the serine protease thrombin (FIIa), which is synthesized as inactive prothrombin (FII) and subsequently activated by FXa/FVa, leading to a positive feedback loop and the production of large quantities of thrombin; once enough thrombin is formed, it cleaves soluble fibrinogen to form insoluble fibrin fibres that, together with aggregated platelets, form a clot. Although beneficial in wound healing, aberrant thrombus formation can lead to serious health consequences. Dabigatran is a univalent reversible direct thrombin inhibitor (DTI) that competitively inhibits thrombin with a Ki of 4.5 ± 0.2 nmol/L. Furthermore, the reversible nature of the inhibition is believed to allow for some normal physiological thrombin function, which may help alleviate some adverse effects associated with anticoagulation therapy. In addition, dabigatran has several glucuronidated metabolites, all of which have been shown to possess _in vitro_ activity similar to the parent compound. In addition to a direct effect on thrombin activity, dabigatran has also been shown to inhibit platelet aggregation, another step in the coagulation pathway. However, the mechanism remains unclear as dabigatran inhibits platelet aggregation stimulated by thrombin and von Willebrand factor (vWF), but not by other pathways such as ADP- or thromboxane A2-induced aggregation.
Pharmacodynamics
Dabigatran etexilate is a double prodrug that is hydrolyzed to the active [dabigatran] by intestinal and hepatic carboxylesterases. Dabigatran is a reversible competitive thrombin inhibitor that directly inhibits the conversion by thrombin of fibrinogen to fibrin, impairing the clotting process and acting as an anticoagulant. Dabigatran use prolongs coagulation markers such as the activated partial thromboplastin time (aPTT), ecarin clotting time (ECT), thrombin time (TT), and dilute thrombin time (dTT), but not the international normalized ratio (INR), which cannot be used in this context as it can in [warfarin] monitoring. As with all anticoagulant therapies, dabigatran carries a risk of bleeding, which may increase with concomitant use of antiplatelet agents, fibrinolytic therapy, heparins, or chronic NSAID use, and should be monitored for. Premature discontinuation of dabigatran, in the absence of an alternative anticoagulant, also carries an increased risk of thromboembolic events. Due to the risk of an epidural or spinal hematoma, dabigatran should generally not be used in the context of neuraxial anesthesia or spinal puncture; if such use is unavoidable, careful monitoring should be employed. Dabigatran should not be used in patients with prosthetic heart valves due to an increased occurrence of major bleeding and thromboembolic events. Dabigatran is a substrate of the P-gp transporter and should generally not be administered together with P-gp inhibitors or inducers, especially in patients with impaired renal function. Lastly, dabigatran or any other direct-acting oral anticoagulant should not be administered in patients with triple-positive antiphospholipid syndrome (APS) due to an increased risk of recurrent thrombotic events. In case of the need for emergency reversal, [idarucizumab] is available for use in adult patients; the safety and efficacy of [idarucizumab] has not been established in pediatric patients yet, for whom reversal may be achieved through hemodialysis, prothrombin complex concentrates, or recombinant FVIIa. However, none of these have been sufficiently evaluated in clinical trials.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C34H41N7O5
分子量
627.73
精确质量
627.316
元素分析
C, 65.05; H, 6.58; N, 15.62; O, 12.74)
CAS号
211915-06-9
相关CAS号
Dabigatran;211914-51-1;Dabigatran-d4 hydrochloride;Dabigatran etexilate mesylate;872728-81-9;Dabigatran etexilate-d13;Dabigatran (ethyl ester);429658-95-7;BIBR 1087 SE;212321-78-3
PubChem CID
135565674
外观&性状
White to off-white solid powder
密度
1.2±0.1 g/cm3
沸点
827.9±75.0 °C at 760 mmHg
熔点
128-129°
闪点
454.5±37.1 °C
蒸汽压
0.0±3.0 mmHg at 25°C
折射率
1.615
LogP
5.13
tPSA
154.03
氢键供体(HBD)数目
3
氢键受体(HBA)数目
9
可旋转键数目(RBC)
18
重原子数目
46
分子复杂度/Complexity
991
定义原子立体中心数目
0
SMILES
O(C(/N=C(\C1C([H])=C([H])C(=C([H])C=1[H])N([H])C([H])([H])C1=NC2C([H])=C(C(N(C3=C([H])C([H])=C([H])C([H])=N3)C([H])([H])C([H])([H])C(=O)OC([H])([H])C([H])([H])[H])=O)C([H])=C([H])C=2N1C([H])([H])[H])/N([H])[H])=O)C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H]
InChi Key
XETBXHPXHHOLOE-UHFFFAOYSA-N
InChi Code
InChI=1S/C34H41N7O5.CH4O3S/c1-4-6-7-10-21-46-34(44)39-32(35)24-12-15-26(16-13-24)37-23-30-38-27-22-25(14-17-28(27)40(30)3)33(43)41(20-18-31(42)45-5-2)29-11-8-9-19-36-29;1-5(2,3)4/h8-9,11-17,19,22,37H,4-7,10,18,20-21,23H2,1-3H3,(H2,35,39,44);1H3,(H,2,3,4)
化学名
ethyl 3-[[2-[[4-(N-hexoxycarbonylcarbamimidoyl)anilino]methyl]-1-methylbenzimidazole-5-carbonyl]-pyridin-2-ylamino]propanoate;methanesulfonic acid
别名
BIBR 1048; BIBR953; Pradaxa;BIBR1048; BIBR-1048; BIBR 953; BIBR-953; Prazaxa
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~126 mg/mL (~200.7 mM)
Water: <1 mg/mL
Ethanol: ~12 mg/mL (~19.1 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (3.98 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (3.98 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.5930 mL 7.9652 mL 15.9304 mL
5 mM 0.3186 mL 1.5930 mL 3.1861 mL
10 mM 0.1593 mL 0.7965 mL 1.5930 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
A Study in Healthy Men to Test Whether Zongertinib Influences the Amount of 4 Other Medicines (Dabigatran, Rosuvastatin, Metformin, and Furosemide) in the Blood
CTID: NCT06504862
Phase: Phase 1    Status: Active, not recruiting
Date: 2024-11-27
A Drug-Drug Interaction Study to Estimate the Effect of PF-07081532 on the Pharmacokinetics of Dabigatran and Rosuvastatin in Overweight or Obese Adult Participants
CTID: NCT05788328
Phase: Phase 1    Status: Terminated
Date: 2024-11-15
A Study to Understand the Effect of a Study Medicine Called ARV-471 on Dabigatran Etexilate in Healthy Adults
CTID: NCT05673889
Phase: Phase 1    Status: Completed
Date: 2024-08-16
Dabigatran Versus Rivaroxaban in Cerebral Venous Thrombosis
CTID: NCT06551402
Phase: Phase 3    Status: Recruiting
Date: 2024-08-13
Dabigatran Versus Apixaban in Cerebral Venous Thrombosis
CTID: NCT06551415
Phase: Phase 3    Status: Recruiting
Date: 2024-08-13
View More

A Study to Learn About How BAY2927088 Affects the Level of Dabigatran or Rosuvastatin in the Blood When These Drugs Are Taken Together in Healthy Participants
CTID: NCT06329895
Phase: Phase 1    Status: Completed
Date: 2024-07-05


A Study in Europe Based on Medical Records That Looks at the Safety of Dabigatran in Children Below 2 Years of Age Who Have Had a Blood Clot and Are at Risk of Developing Another Blood Clot
CTID: NCT05536791
Phase:    Status: Withdrawn
Date: 2024-06-26
Bioequivalence Study of Dabigatran Etexilate Capsules 150 mg in Healthy Thai Volunteers Under Fasting Conditions
CTID: NCT06441916
Phase: Phase 1    Status: Not yet recruiting
Date: 2024-06-06
Efficacy of Short Term Dabigatran Etexilate Followed by Aspirin Monotherapy After LAA (Left Atrial Appendage) Device Closure (the DEA-LAA Study).
CTID: NCT03539055
Phase: Phase 4    Status: Completed
Date: 2024-05-23
Population Pharmacokinetic Study of the Effect of Polymorphisms in the ABCB1 and CES1 Genes on the Pharmacokinetics of Dabigatran
CTID: NCT06387407
Phase:    Status: Not yet recruiting
Date: 2024-04-29
Effect of Oral D-mannose Tablets on Pharmacokinetics of Dabigatranate in Healthy Adults
CTID: NCT06360055
Phase: N/A    Status: Recruiting
Date: 2024-04-11
A Study in Healthy Men to Test the Influence of BI 1323495 on the Amount of the Medicines Rosuvastatin and Dabigatran in the Blood
CTID: NCT04257032
Phase: Phase 1    Status: Completed
Date: 2024-02-23
Evaluation of the Potential Drug-drug Interactions Between Gemfibrozil or Dabigatran Etexilate and Camlipixant
CTID: NCT05959447
Phase: Phase 1    Status: Completed
Date: 2024-02-15
THRomboprophylaxis in Individuals Undergoing Superficial endoVEnous Treatment (THRIVE)
CTID: NCT05735639
Phase: Phase 4    Status: Recruiting
Date: 2024-02-13
Dabigatran for Mitral Stenosis Atrial Fibrillation
CTID: NCT04045093
Phase: Phase 4    Status: Recruiting
Date: 2024-02-02
A Study of Lasmiditan in Healthy Volunteers
CTID: NCT04749914
Phase: Phase 1    Status: Completed
Date: 2024-02-01
Effect of Tepotinib on the PK of the P-gp Substrate Dabigatran Etexilate
CTID: NCT03492437
Phase: Phase 1    Status: Completed
Date: 2023-08-07
The Danish Non-vitamin K Antagonist Oral Anticoagulation Study in Patients With Venous Thromboembolism (DANNOAC-VTE)
CTID: NCT03129555
Phase: Phase 4    Status: Recruiting
Date: 2023-07-06
The Danish Non-vitamin K Antagonist Oral Anticoagulation Study in Patients With Atrial Fibrillation
CTID: NCT03129490
Phase: Phase 4    Status: Recruiting
Date: 2023-07-06
Effect of Relacorilant on the Pharmacokinetics of the Sensitive P-glycoprotein Substrate Dabigatran Etexilate in Healthy Participants
CTID: NCT05347979
Phase: Phase 1    Status: Completed
Date: 2023-02-09
Pharmacokinetic Study to Evaluate Dabigatran Etexilate in Elderly Subjects
CTID: NCT05715658
Phase: N/A    Status: Recruiting
Date: 2023-02-08
Study to Assess the Effect of Co-Administration of AZD9833 on the Pharmacokinetics of Midazolam, of Omeprazole, of Celecoxib and of Dabigatran Etexilate in Healthy Postmenopausal Female Volunteers
CTID: NCT05438303
Phase: Phase 1    Status: Completed
Date: 2023-01-12
A Study to Learn How the Study Drug Elinzanetant (BAY 3427080) Affects the Way the Drug Dabigatran Moves Into, Through and Out of the Body in Healthy Male and Female Participants
CTID: NCT05471817
Phase: Phase 1    Status: Completed
Date: 2022-11-22
A Cohort Study With 100 Subjects Having a Primary Total Knee Replacement, Taking Pradax Post Discharge for Ten Days
CTID: NCT00868179
Phase: Phase 4    Status: Withdrawn
Date: 2022-11-14
A Study to Examine the Effect of Daridorexant on the Way the Body Absorbs, Distributes, and Gets Rid of Dabigatran and Rosuvastatin in Healthy Male Subjects
CTID: NCT05480475
Phase: Phase 1    Status: Completed
Date: 2022-11-08
Fruquintinib DDI Study With P-gp and BCRP Substrates
CTID: NCT05368805
Phase: Phase 1    Status: Completed
Date: 2022-10-06
Perpetrator DDI Potential of Givinostat as Inhibitor and Inducer of CYP3A and P-gp Activity
CTID: NCT05492318
Phase: Phase 1    Status: Completed
Date: 2022-08-08
Registration of Idarucizumab for Patients With IntraCranial Hemorrhage
CTID: NCT04062097
Phase:    Status: Completed
Date: 2022-04-07
Study to Gather Information How Often Venous Thromboembolism Occurs in Prostate Cancer Patients in Sweden and How This Condition is Treated With Blood Thinners
CTID: NCT03965741
Phase:    Status: Completed
Date: 2021-11-30
Dual Antithrombotic Therapy With Dabigatran and Ticagrelor in Patients With ACS and Non-valvular AF Undergoing PCI
CTID: NCT04695106
Phase: Phase 4    Status: Recruiting
Date: 2021-11-04
Impact of Anticoagulation Therapy on the Cognitive Decline and Dementia in Patients With Non-Valvular Atrial Fibrillation
CTID: NCT03061006
Phase: Phase 4    Status: Completed
Date: 2021-09-02
A Study of Darunavir in Combination With Cobicistat or Ritonavir, and Dabigatran Etexilate in Healthy Participants
CTID: NCT04208061
Phase: Phase 1    Status: Completed
Date: 2021-06-09
RE-ELECT. Dabigatran vs Warfarin in AF Patients With T2DM and CKD
CTID: NCT03789695
Phase: Phase 4    Status: Unknown status
Date: 2021-03-26
A Nationwide Observational Study Looking at Effectiveness and Bleeding Complications of NOACs vs. VKA in Non-valvular Atrial Fibrillation Patients.
CTID: NCT03715725
Phase:    Status: Terminated
Date: 2020-12-10
Open Label Study Comparing Efficacy and Safety of Dabigatran Etexilate to Standard of Care in Paediatric Patients With Venous Thromboembolism (VTE)
CTID: NCT01895777
Phase: Phase 3    Status: Completed
Date: 2020-07-07
Safety of Dabigatran Etexilate in Blood Clot Prevention in Children
CTID: NCT02197416
Phase: Phase 3    Status: Completed
Date: 2020-06-04
A Drug-drug Interaction Study of Lanabecestat (LY3314814) in Healthy Participants
CTID: NCT02568397
Phase: Phase 1    Status: Completed
Date: 2019-11-01
Dabigatran Etexilate for Secondary Stroke Prevention in Patients With Embolic Stroke of Undetermined Source (RE-SPECT ESUS)
CTID: NCT02239120
Phase: Phase 3    Status: Completed
Date: 2019-09-06
A Clinical Trial Comparing Efficacy and Safety of Dabigatran Etexilate With Warfarin in Patients With Cerebral Venous and Dural Sinus Thrombosis (RE-SPECT CVT)
CTID: NCT02913326
Phase: Phase 3    Status: Completed
Date: 2019-08-15
Resolution of Left Atrial-Appendage Thrombus - Effects of Dabigatran in Patients With AF
CTID: NCT02256683
Phase: Phase 2    Status: Terminated
Date: 2019-07-26
Evaluation of Abbreviated Versus Conventional Course of Dabigatran Etexilate Before Electric Cardioversion in Patients With Atrial Fibrillation (RE-SOUND Study)
CTID: NCT03975062
Phase: Phase 4    Status: Unknown status
Date: 2019-06-05
Drug Persistence/Adherence in Patients Treated With Dabigatran or VKA for Stroke Prevention in Non Valvular Atrial Fibrillation (SPAF)
CTID: NCT02240667
Phase:    Status: Completed
Date: 2019-04-19
A Study of Dabigatran Etexilate as Primary Treatment of Malignancy Associated Venous Thromboembolism
CTID: NCT03240120
Phase: Phase 3    Status: Unknown status
Date: 2019-04-17
Validation of Predictors of OAC Initiation Using EMR Data
CTID: NCT03006341
Phase:    Status: Completed
Date: 2019-03-22
Study to Investigate the Pharmacokinetics (PK) and Pharmacodynamics (PD) of Idarucizumab in Chinese Healthy Male and Female Volunteers Who Had Taken Dabigatran Etexilate and Whose Plasma Concentrations of Dabigatran Were at or Close to Steady State
CTID: NCT03086356
Phase: Phase 1    Status: Completed
Date: 2019-03-08
Pradaxa Tablet Proton Pump Inhibitor (PPI) Bioavailability (BA) Study in Japan
CTID: NCT03143166
Phase: Phase 1    Status: Completed
Date: 2019-01-16
Bioequivalence of Tablet Formulation of Dabigatran Etexilate Compared to Commercial Capsule Formulation Following Oral Administration in Healthy Male Subjects
CTID: NCT03070171
Phase: Phase 1    Status: Completed
Date: 2019-01-09
Drug-drug-interaction Study to Assess the Effect of Darolutamide on the Pharmacokinetics of Probe Substrates of CYP3A4 and P-gp in Healthy Male Volunteers
CTID: NCT03237416
Phase: Phase 1    Status: Completed
Date: 2018-11-06
Treatment of Patients Undergoing Primary Unilateral Elec
Start or STop Anticoagulants Randomised Trial (SoSTART) after spontaneous intracranial haemorrhage
CTID: null
Phase: Phase 3    Status: GB - no longer in EU/EEA
Date: 2017-09-11
Laboratory measurement of direct oral anticoagulants on patients with atrial fibrillation
CTID: null
Phase: Phase 4    Status: Prematurely Ended
Date: 2017-05-04
RE-SPECT CVT: a randomised, open-label, exploratory trial with blinded endpoint adjudication (PROBE), comparing efficacy and safety of oral dabigatran etexilate versus oral warfarin in patients with cerebral venous and dural sinus thrombosis over a 24-week period
CTID: null
Phase: Phase 3    Status: Completed
Date: 2017-01-09
An Open Label, Non-Randomised, Phase II study to Determine if Dabigatran and its Metabolites are Detectable in Breast Milk Following Oral Administration to Non-Breastfeeding Mothers
CTID: null
Phase: Phase 2    Status: Completed
Date: 2015-10-30
Prevention of Silent Cerebral Thromboembolism
CTID: null
Phase: Phase 3    Status: Prematurely Ended
Date: 2015-05-26
Randomized Evaluation of dabigatran etexilate Compared to warfarIn in pulmonaRy vein ablation: assessment of an uninterrupted periproCedUral alntIcoagulation sTrategy (The RE-CIRCUIT Trial)
CTID: null
Phase: Phase 4    Status: Completed
Date: 2015-02-24
Randomized, double-blind, Evaluation in secondary Stroke Prevention comparing the EfficaCy and safety of the oral Thrombin inhibitor dabigatran etexilate (110 mg or 150 mg, oral b.i.d.) versus acetylsalicylic acid (100 mg oral q.d.) in patients with Embolic Stroke of Undetermined Source (RESPECT ESUS)
CTID: null
Phase: Phase 3    Status: Completed
Date: 2014-11-21
open-label, single dose, tolerability, Pharmacokinetic/Pharmacodynamics and safety study of dabigatran etexilate given at the end of standard anticoagulant therapy in children aged less than 1 year old
CTID: null
Phase: Phase 2    Status: Prematurely Ended, Completed
Date: 2014-08-05
Open label, single arm safety prospective cohort study of dabigatran etexilate for secondary prevention of venous thromboembolism in children from 0 to less than 18 years
CTID: null
Phase: Phase 3    Status: Completed, Temporarily Halted, Prematurely Ended
Date: 2014-07-25
Open-label, randomized, parallel-group, active-controlled, multi-centre, non-inferiority study of dabigatran etexilate versus standard of care for venous thromboembolism treatment in children from birth to less than 18 years of age
CTID: null
Phase: Phase 3    Status: Completed
Date: 2013-09-20
A large, international, randomized, placebo-controlled trial to assess the impact of dabigatran (a direct thrombin inhibitor) and omeprazole (a proton-pump inhibitor) in patients suffering myocardial injury after noncardiac surgery
CTID: null
Phase: Phase 3    Status: Prematurely Ended, Completed
Date: 2013-09-05
Direct thrombin inhibitors versus low molecular weight heparins as thromboprophylaxis in Staphylococcus aureus bacteraemia. A prospective randomized controlled academic single-centre feasibility study
CTID: null
Phase: Phase 2    Status: Completed
Date: 2013-02-18
A randomized pilot study comparing the safety of DAbigatran and RIvaroxaban versus NAdroparin in the prevention of venous thromboembolism after knee arthroplasty surgery. DARINA
CTID: null
Phase: Phase 3    Status: Ongoing
Date: 2012-06-05
An exploratory study to investigate the pharmacokinetics and effects of DABIgatran etexilate in patients with stable severe RENAL disease: DabiRenal
CTID: null
Phase: Phase 1, Phase 2    Status: Completed
Date: 2012-04-18
Evaluation of the long term safety of the use of dabigatran etexilate in
CTID: null
Phase: Phase 2    Status: Prematurely Ended, Completed
Date: 2011-12-20
A Randomised, phase II study to Evaluate the sAfety and
CTID: null
Phase: Phase 2    Status: Completed, Prematurely Ended
Date: 2011-09-02
DABI-ADP-2:
CTID: null
Phase: Phase 4    Status: Completed
Date: 2011-05-10
DABI-ADP-1:
CTID: null
Phase: Phase 4    Status: Completed
Date: 2011-04-12
Réversion de l'effet anticoagulant des nouveaux antithrombotiques anti Xa et anti IIa par des médicaments hémostatiques spécifiques ou non spécifiques : étude ex vivo chez le volontaire sain.
CTID: null
Phase: Phase 4    Status: Ongoing
Date: 2010-11-08
Open-label safety and tolerability of dabigatran etexilate mesilate given for 3 days at the end of standard anticoagulant therapy in successive groups of children aged 2 years to less than 12 years, and 1 year to less than 2 years.
CTID: null
Phase: Phase 2    Status: Prematurely Ended, Completed
Date: 2010-08-17
An open label, non-comparative, pharmacokinetic and pharmacodynamic study to evaluate the effect of Dabigatran Etexilate on coagulation parameters including a calibrated thrombin time test in patients with moderate renal impairment (creatinine clearance 30-50 ml/min) undergoing primary unilateral elective total knee or hip replacement surgery
CTID: null
Phase: Phase 4    Status: Completed
Date: 2010-07-15
RELY-ABLE long term multi-center extension of dabigatran treatment in patients with atrial fibrillation who completed the RE-LY trial and a cluster randomised trial to assess the effect of a knowledge translation intervention on patient outcomes
CTID: null
Phase: Phase 3    Status: Completed
Date: 2008-11-20
A phase III, randomised, double blind, parallel-group study of the efficacy and safety of oral dabigatran etexilate (150 mg bid) compared to warfarin (INR 2.0-3.0) for 6 month treatment of acute symptomatic venous thromboembolism, following initial treatment for at least 5 days with a parenteral anticoagulant approved for this indication. RE-COVER II
CTID: null
Phase: Phase 3    Status: Completed
Date: 2008-10-23
Randomized, Open-label study of Dabigatran Etexilate, a Novel, oral, Direct Thrombin-inhibitor in clinical development, in Elective Percutaneous Coronary Intervention. (D-Fine)
CTID: null
Phase: Phase 2    Status: Completed
Date: 2008-08-26
A phase III randomised, parallel group, double-blind, active controlled
CTID: null
Phase: Phase 3    Status: Completed
Date: 2008-04-07
RandomisEd Dabigatran Etexilate dose finding study in patients with acute coronary syndromes post index Event with additional risk factors for cardiovascular complications also receiving aspirin and clopidogrel: Multi-centre, prospective, placebo controlled, group dose escalation trial (RE-DEEM STUDY)
CTID: null
Phase: Phase 2    Status: Completed
Date: 2008-02-06
A phase III, randomised, multicenter, double-blind, parallel-group, active controlled study to evaluate the efficacy and safety of oral dabigatran etexilate (150 mg bid) compared to warfarin (INR 2.0-3.0) for the secondary prevention of venous thromboembolism. RE-MEDY
CTID: null
Phase: Phase 3    Status: Completed
Date: 2006-03-20
A phase III, randomised, double blind, parallel-group study of the efficacy and safety of oral dabigatran etexilate (150 mg bid) compared to warfarin (INR 2.0-3.0) for 6 month treatment of acute symptomatic venous thromboembolism, following initial treatment (5-10 days) with a parenteral anticoagulant approved for this indication. RE-COVER
CTID: null
Phase: Phase 3    Status: Completed
Date: 2006-03-14
Randomized Evaluation of Long term anticoagulant therapy (RE-LY) comparing the efficacy and safety of two blinded doses of dabigatran etexilate with open label warfarin for the prevention of stroke and systemic embolism in patients with non-valvular atrial fibrillation: prospective, multi-centre, parallel-group, non-inferiority trial (RE-LY STUDY)
CTID: null
Phase: Phase 3    Status: Completed
Date: 2005-12-23
A phase III, randomized, parallel-group, double-blind, active controlled study to investigate the efficacy and safety of two different dose regimens (75mg day 1 followed by 150 mg day 2-completion, and 110 mg day 1 followed by 220 mg day 2-completion) of dabigatran etexilate administered orally (capsules), compared to enoxaparin 30 mg twice a day subcutaneous for 12 – 15 days in prevention of venous thromboembolism in patients with primary elective total knee replacement surgery
CTID: null
Phase: Phase 3    Status: Completed
Date: 2005-08-01
A phase III randomised, parallel group, double-blind, active controlled study to investigate the efficacy and safety of two different dose regimens of orally administered dabigatran etexilate capsules [150 or 220 mg once daily starting with half dose (i.e. 75 or 110 mg) on the day of surgery] compared to subcutaneous enoxaparin 40 mg once daily for 28-35 days, in prevention of venous thromboembolism in patients with primary elective total hip replacement surgery.
CTID: null
Phase: Phase 3    Status: Completed
Date: 2004-11-01
A phase III, randomised, parallel-group, double-blind, active controlled study to investigate the efficacy and safety of two different dose regimens of orally administered dabigatran etexilate capsules [150 or 220 mg once daily starting with a half dose (i.e.75 or 110 mg) on the day of surgery] compared to subcutaneous enoxaparin 40 mg once daily for 8+/-2 days, in prevention of venous thromboembolism in patients with primary elective total knee replacement surgery.
CTID: null
Phase: Phase 3    Status: Completed
Date: 2004-11-01
Twice-daily oral direct thrombin inhibitor dabigatran in the long-term prevention of recurrent symptomatic venous thromboembolism in patients with symptomatic deep-vein thrombosis or pulmonary embolism.
CTID: null
Phase: Phase 3    Status: Completed
Date:

相关产品
联系我们