| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 5mg |
|
||
| 10mg |
|
||
| 50mg |
|
||
| 100mg |
|
||
| 500mg |
|
||
| Other Sizes |
| 靶点 |
Lipopeptide antibiotics first isolated from Streptomyces fungicidicus No.B547 [1]
|
|---|---|
| 体外研究 (In Vitro) |
Endurocidn对革兰氏阳性菌显示出良好的抑制活性,包括许多耐药病原体,例如耐万古霉素的屎肠球菌(VRE)和耐甲氧西林的金黄色葡萄球菌(MRSA)。它们可以通过与脂质II竞争性结合来阻断细菌细胞壁的合成,并阻止随后肽聚糖安装的转糖基化步骤,这与万古霉素和β-内酰胺抗生素等实际使用的药物完全不同,后者通过与D,D转肽酶中的亲核活性位点丝氨酸残基共价结合来抑制细菌细胞壁合成。Ramoplanin A2现在是一种经美国食品药品监督管理局批准的分子,正在进入治疗VRE和艰难梭菌感染的III期临床试验[1]。
|
| 体内研究 (In Vivo) |
除了抗菌活性外,enduracidins还显示出有效的促生长活性,并已广泛应用于畜牧业[1]。
共有200头22日龄、体重6.0±0.9kg的PIC®仔猪在育苗阶段(22至64日龄)接受了四种处理:CONTR(对照饮食);ENR+ZnO(对照饮食+10mg/kg恩拉霉素+2500 mg/kg氧化锌,前21天);BUT(对照饮食+900 mg/kg丁酸钠)和TAN(对照饮食+2000 mg/kg缩合单宁)。实验设计是一个随机区组,有4个治疗组和10个重复组,每组5只动物作为实验单位。对直肠深层微生物群的动物技术性能、腹泻指数评分、日粮消化率和宏基因组学进行了评估。[2] TAN在育苗阶段和最终体重的增加(p<0.05)大于CONTR(分别为394和360 g/d,22.6和21.1 kg),这些值在ENR+ZnO和BUT中处于中间水平(分别为365和382 g/d,21.3和22.1 kg)。半液体性腹泻的治疗方法之间没有差异(评分2),但CONTR的严重腹泻病例(评分3;p<0.05)多于ENR+ZnO、but和TAN,分别为42、18、29和21例。这些处理对稀有类群或分类群的相对丰度(一致性)没有影响,但与其他处理相比,TAN的使用促进了短杆菌属和肠球菌属丰度的增加(p<0.05)。 结论:使用黑荆树浓缩单宁作为性能增强添加剂是有效的,对性能和肠道健康有影响,表明其在仔猪育雏期日粮中替代氧化锌和恩拉霉素的潜力。 |
| 酶活实验 |
Enduracidins的发酵和生产[1]
真菌链霉菌ATCC 31731在MS琼脂上生长6-8天以收集孢子。将约1.0×107个孢子的等分试样接种到50ml种子培养基中。将种子培养物在28°C、220转/分-1的温度下生长48小时。随后,将5毫升上述种子培养物接种到250毫升烧瓶中的50毫升发酵培养基中,温度为28°C,220转/分钟-1,持续8天。离心后收集菌丝体并冷冻干燥。用甲醇洗涤干燥的菌丝体并超声处理30分钟。随后,将混合物在18°C下摇动3小时并离心以去除颗粒。将上清液在30°C下真空蒸发,然后溶解在2ml甲醇中进行HPLC分析。敲除和过表达菌株的发酵和抗生素生产条件与野生型相同。 enduracidins产生的光谱分析[1] 在Shimadzu HPLC系统上使用反向C18柱(5μm,4.6 mm×250 mm,Alltech,Deerfield,IL)进行HPLC分析,使用含有0.1%三氟乙酸的乙腈/水(10-30%20分钟,30-40%20分钟,100%5分钟,流速0.8 ml min-1)的线性梯度。检测波长为267nm。使用安捷伦1260/6460三四极LC/MS系统和电喷雾电离源进行LC-MS分析。HR-ESI-MS在安捷伦1260 HPLC/6520 QTOF-MS仪器上进行。 |
| 动物实验 |
A total of 200 PIC® piglets that were 22 days old and weighed 6.0±0.9 kg were subjected to four treatments in the nursery phase (22 to 64 days of age): CONTR (control diet); ENR+ZnO (control diet + 10 mg/kg of enramycin + 2,500 mg/kg of zinc oxide during the first 21 days); BUT (control diet + 900 mg/kg of sodium butyrate) and TAN (control diet + 2,000 mg/kg of condensed tannin). The experimental design was a randomized block with 4 treatments and 10 replicates, with a pen of five animals each as the experimental unit. The zootechnical performance, diarrhea index score, dietary digestibility and metagenomics of the deep rectum microbiota were evaluated.[2]
|
| 毒性/毒理 (Toxicokinetics/TK) |
rat LD50 oral >10 gm/kg Takeda Kenkyusho Nempo. Annual Report of the Takeda Research Laboratories., 28(76), 1969
rat LD50 intraperitoneal 830 mg/kg BEHAVIORAL: TREMOR; BEHAVIORAL: ATAXIA; LUNGS, THORAX, OR RESPIRATION: RESPIRATORY DEPRESSION Takeda Kenkyusho Nempo. Annual Report of the Takeda Research Laboratories., 28(76), 1969 rat LD50 subcutaneous >5 gm/kg Takeda Kenkyusho Nempo. Annual Report of the Takeda Research Laboratories., 28(76), 1969 rat LD50 intravenous 66600 ug/kg BEHAVIORAL: TREMOR; BEHAVIORAL: ATAXIA; LUNGS, THORAX, OR RESPIRATION: RESPIRATORY DEPRESSION Takeda Kenkyusho Nempo. Annual Report of the Takeda Research Laboratories., 28(76), 1969 rat LD50 intramuscular >5 gm/kg Takeda Kenkyusho Nempo. Annual Report of the Takeda Research Laboratories., 28(76), 1969 |
| 参考文献 |
|
| 其他信息 |
Aims: To increase enduracidin production in Streptomyces fungicidicus ATCC 31731 by overexpressing positive regulators in enduracidin biosynthesis.[1]
Methods and results: Genes orf22 and orf42 were knocked out by in-frame deletion based on CRISPR/Cas9 strategy, while the orf41 gene was inactivated by replacing it with the apramycin resistance gene cassette aac(3)IV using a fast screening blue/white system. The integrative plasmid pSET152ermE was used for the overexpression of orf22, orf41 and orf42 individually. The constructed plasmids were transformed into wild-type strain Streptomyces fungicidicus ATCC 31731. Three gene inactivation mutants Δorf22, Δorf41 and Δorf42 and three recombinant strains overexpressing orf22, orf41 and orf42 were all fermented and the enduracidin production of each strain was detected and compared by HPLC analysis. Two resulting engineered strains were generated through overexpression of gene orf22 and orf42 in Streptomyces fungicidicus, respectively, and in these strains the enduracidins titres were increased by approximately 4·0-fold and 2·3-fold higher than that of the wild-type strain.[1] Conclusions: The functions of three regulatory genes orf22, orf41 and orf42 in the enduracidin gene cluster in Streptomyces fungicidicus ATCC 31731 were examined. The orf22 gene, encoding a SARP family protein, was proposed to act in a positive manner. The proteins encoded by genes orf41 and orf42 were proposed to compose a two-component regulation system, in which the response protein Orf41 was characterized as a repressor, and the kinase Orf42 was shown to be an activator. The production of enduracidins was improved considerably by overexpression of the two positive regulatory genes orf22 and orf42 respectively.[1] Significance and impact of the study: The production of enduracidins was successfully improved by manipulating the regulatory genes involving in enduracidin biosynthesis, providing an efficient approach to improve enduracidin production further for fermentation industry and synthetic biological research.[1] Enramycin, a common growth promoter utilized in chickens and pigs, is sensitive against Gram-positive bacteria, and the maximum residue limit (MRL) of enramycin set up by is 30 μg/kg. However, the methods have been reported for detecting enramycin have failed to meet the accuracy requirements, with the required limit of quantification being higher than the MRL. To address this issue, we developed a high-sensitive and robust analytical method based on ultrahigh-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS), to determine enramycin residues in swine tissues, including liver, kidney, pork, and fat. The ENV cartridge was selected to cleanup and enrich analytes after being extracted using a mixture of 55% methanol containing 0.2 M hydrochloric acid. With comprehensively validation, this established method was found great linearity of enramycin in each tissue, with a coefficient of variation above 0.99. Satisfactory recoveries from four different spiking levels were acquired (70.99-101.40%) while the relative standard deviations were all below 9%. The limit of quantification of enramycin in the present study is 5 μg/kg in fat and 10 μg/kg in other tissues, meeting the requirements for conducting the corresponding safety evaluation study. This method was demonstrated with excellent specificity, stability, and high sensitivity. To conclude, this novel approach is sufficiently sensitive and robust for the safety evaluation of enramycin in food products. https://pubmed.ncbi.nlm.nih.gov/39290506/ |
| 分子式 |
C107H138N26O31CL2
|
|---|---|
| 分子量 |
2355.30224275589
|
| 精确质量 |
2337.92
|
| 元素分析 |
C, 54.15; H, 5.95; Cl, 2.99; N, 15.34; O, 21.57
|
| CAS号 |
11115-82-5
|
| PubChem CID |
56842192
|
| 外观&性状 |
Light brown to brown solid powder
|
| LogP |
3.835
|
| tPSA |
922.33
|
| 氢键供体(HBD)数目 |
34
|
| 氢键受体(HBA)数目 |
35
|
| 可旋转键数目(RBC) |
34
|
| 重原子数目 |
167
|
| 分子复杂度/Complexity |
5280
|
| 定义原子立体中心数目 |
0
|
| SMILES |
CCC(C)CCCC/C=C/C=C/C(=O)NC(CC(=O)O)C(=O)NC1C(OC(=O)C(NC(=O)C(NC(=O)C(NC(=O)NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)N(C(=O)C(NC1=O)C2=CC=C(C=C2)O)CCCCN)C(C)O)C3=CC=C(C=C3)O)C4=CC=C(C=C4)O)C(C)O)CCCNC(=O)N)CC5CNC(=N5)N)C6=CC=C(C=C6)O)CO)C7=CC(=C(C(=C7)Cl)O)Cl)CC8CNC(=N8)N)C)C9=CC=C(C=C9)O)C.O
|
| InChi Key |
NJCUSQKMYNTYOW-MWUYRYRWSA-N
|
| InChi Code |
InChI=1S/C107H138Cl2N26O31.H2O/c1-7-51(2)17-12-10-8-9-11-13-19-76(144)120-74(47-77(145)146)92(152)126-80-55(6)166-102(162)86(60-28-38-68(143)39-29-60)132-88(148)52(3)117-90(150)73(46-63-49-116-104(112)119-63)124-106(164)134-100(160)84(61-43-69(108)87(147)70(109)44-61)128-93(153)75(50-136)123-97(157)81(56-20-30-64(139)31-21-56)127-91(151)72(45-62-48-115-103(111)118-62)122-89(149)71(18-16-41-114-105(113)163)121-94(154)78(53(4)137)125-98(158)82(57-22-32-65(140)33-23-57)130-99(159)83(58-24-34-66(141)35-25-58)129-95(155)79(54(5)138)133-107(165)135(42-15-14-40-110)101(161)85(131-96(80)156)59-26-36-67(142)37-27-59;/h9,11,13,19-39,43-44,51-55,62-63,71-75,78-86,136-143,147H,7-8,10,12,14-18,40-42,45-50,110H2,1-6H3,(H,117,150)(H,120,144)(H,121,154)(H,122,149)(H,123,157)(H,125,158)(H,126,152)(H,127,151)(H,128,153)(H,129,155)(H,130,159)(H,131,156)(H,132,148)(H,133,165)(H,145,146)(H3,111,115,118)(H3,112,116,119)(H3,113,114,163)(H2,124,134,160,164);1H2/b11-9+,19-13+;
|
| 化学名 |
4-[[41-(4-aminobutyl)-9,23-bis[(2-amino-4,5-dihydro-1H-imidazol-4-yl)methyl]-26-[3-(carbamoylamino)propyl]-14-(3,5-dichloro-4-hydroxyphenyl)-29,38-bis(1-hydroxyethyl)-17-(hydroxymethyl)-3,20,32,35,43-pentakis(4-hydroxyphenyl)-6,47-dimethyl-2,5,8,11,13,16,19,22,25,28,31,34,37,40,42,45-hexadecaoxo-1-oxa-4,7,10,12,15,18,21,24,27,30,33,36,39,41,44-pentadecazacycloheptatetracont-46-yl]amino]-3-[[(2E,4E)-10-methyldodeca-2,4-dienoyl]amino]-4-oxobutanoic acid;hydrate
|
| 别名 |
Enramycin; 11115-82-5; Enramicina; ENDURACIDIN; Enramycinum; Enradin; Enramycin [INN]; 12772-37-1;
|
| HS Tariff Code |
2934.99.9001
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 本产品在运输和储存过程中需避光。 |
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
|---|---|
| 溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 0.4246 mL | 2.1229 mL | 4.2457 mL | |
| 5 mM | 0.0849 mL | 0.4246 mL | 0.8491 mL | |
| 10 mM | 0.0425 mL | 0.2123 mL | 0.4246 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。