规格 | 价格 | 库存 | 数量 |
---|---|---|---|
25mg |
|
||
50mg |
|
||
100mg |
|
||
Other Sizes |
|
靶点 |
Natural alkaloid from seeds of PEGANUM
|
---|---|
体外研究 (In Vitro) |
经鉴定,Harmaline及其衍生物可作为抗耐多药药物,用于治疗多种高耐药和巴基斯坦耐多药大肠杆菌临床分离株。这些化合物可能为进一步研究耐多药大肠杆菌感染的治疗方法提供线索。[1]
在Control (Salin)组和Experiment (Harmaline)组进行实验,生成用于开发预测模型的数据集。由于数据集的样本数量有限,我们使用了对小数据集有效的模型。在不同的回归模型组(线性模型、集成模型和树模型)中,集成模型,特别是LGB方法,可以获得更好的性能。结果表明,在10倍交叉验证中,第一峰潜伏期的平均平方误差为0.0002,平均绝对误差为0.01。该研究表明,机器学习在预测第一次峰值延迟方面具有潜力,无需大量的动物试验就可以进行可靠的估计。这种智能预测系统有助于有效地分析健康和不健康脑细胞的第一峰潜伏期变化,简化实验并提供对捕获信号的更详细的见解。[2] |
体内研究 (In Vivo) |
抑郁症是一种以持续情绪低落、快感缺乏和认知障碍为特征的精神障碍,影响着世界人口的3.8%,其中包括5%的成年人。槟榔是一种药用植物,据报道对阿尔茨海默病、帕金森病和抑郁症有有效的治疗作用。本研究旨在评价哈玛拉籽提取物对慢性不可预测轻度应激(CUMS)大鼠的行为学和药理作用,并探讨其作用机制。对cms暴露的大鼠分别给予75和150 mg/kg, ig, 2周。采用高效液相色谱法测定提取液中Harmaline和Harmaline生物碱的浓度。采用ICP-MS对种子进行重金属分析。结果表明,150 mg/kg剂量的苦参草显著降低了cums暴露大鼠的抑郁样行为,表现为增加蔗糖偏好测试(SPT)中的蔗糖消耗量,减少强迫游泳测试(FST)中的静止时间和血浆皮质酮水平,增加升高+迷宫(EPM)中张开双臂的时间,改善被动回避测试(PAT)中的记忆和学习。此外,P. harmala降低了暴露于CUMS的大鼠大脑中的单胺氧化酶a (MAO-A)水平,并增加了5-羟色胺(5-HT)、多巴胺(DA)和去甲肾上腺素(NA)水平。麻瓜可降低大鼠脑促炎转录因子核因子-κB (NF-κB)的表达,提高抗氧化核因子红细胞2相关因子2 (Nrf2)的表达。此外,苦参还能改善大鼠脑内脑源性神经营养因子(BDNF)和原肌球蛋白受体激酶B (TrkB)蛋白的表达。综上所述,150 mg/kg剂量的苦参可通过改善神经递质水平、减少氧化应激、抑制神经炎症和激活BDNF/TrkB通路,更有效地预防cums暴露大鼠的抑郁样行为,这些都是抑郁症发病机制中的重要因素。[2]
|
细胞实验 |
多药耐药(MDR)是传染病治疗中的一个重大挑战。引起尿路感染的细菌(如大肠杆菌)中的耐多药耐药使尿路感染的治疗变得非常困难。
目的:合成一种毒芹碱衍生物文库,并评价其对多种耐多药大肠杆菌的活性。
方法:以香薰碱(1)为原料,与多种酸卤化物和酸酐反应合成香薰碱衍生物。用体外MTT法测定了这些化合物的药敏。用扫描电子显微镜、原子力显微镜和荧光显微镜观察了小虫碱(1)及其新衍生物2和3处理后细菌细胞形态的变化。采用荧光素化学发光法研究了汉丁碱及其衍生物对耐多药大肠杆菌活性氧(ROS)产生的影响。
结果:所选化合物有助于荧光标记染料DiBAC4(3)与富含脂质的细胞内实体结合,并容易穿透化合物诱导的MDR大肠杆菌去极化膜,产生尖锐的绿色荧光。与传统抗生素相比,这些化合物还能引发细菌细胞产生大量活性氧。目前的研究表明,虫毒碱(1)及其衍生物2和3被鉴定为抗MDR药物,可用于抗MDR大肠杆菌菌株。化合物1-3对耐多药大肠杆菌的抑菌作用可能是由于ros诱导的细菌细胞膜损伤引起的膜去极化。[1]
|
参考文献 |
[1]. Harmaline and its Derivatives Against the Infectious Multi-Drug Resistant Escherichia coli. Med Chem. 2017;13(5):465-476.
[2]. Peganum harmala L. seed extract attenuates anxiety and depression in rats by reducing neuroinflammation and restoring the BDNF/TrkB signaling pathway and monoamines after exposure to chronic unpredictable mild stress. Metab Brain Dis . 2024 Aug 22. doi: 10.1007/s11011-024-01416-6. [3]. Comparison of Regression Methods to Predict the First Spike Latency in Response to an External Stimulus in Intracellular Recordings for Cerebellar Cells. Stud Health Technol Inform . 2024 Aug 22:316:796-800. |
其他信息 |
Background: The present study aimed to elucidate the potential anticancer activity and mechanism of P. harmala's alkaloid extract, harmine (HAR), and harmaline (HAL) in HCT-116 colorectal cancer cells.
Methods and results: P. harmala's alkaloid was extracted from harmala seeds. HCT-116 cells were treated with P. harmala's alkaloid extract, HAR and HAL. Cytotoxicity was determined by MTT assay, apoptotic activity detected via flow cytometry and acridine orange (AO)/ethidium bromide (EB) dual staining, and cell cycle distribution analyzed with flow cytometry. The mRNA expression of Bcl-2-associated X protein (Bax) and glycogen synthase kinase-3 beta (GSK3β) was measured by real-time PCR. Furthermore, the expression of Bax, Bcl-2, GSK3β and p53 proteins, were determined by western blotting. The findings indicated that, P. harmala's alkaloids extract, HAR and HAL were significantly cytotoxic toward HCT116 cells after 24 and 48 h of treatment. We showed that P. harmala's alkaloid extract induce apoptosis and cell cycle arrest at G2 phase in the HCT116 cell line. Downregulation of GSK3β and Bcl-2 and upregulation of Bax and p53 were observed.
Conclusion: The findings of this study indicate that the P. harmala's alkaloid extract has anticancer activity and may be further investigated to develop future anticancer chemotherapeutic agents.Mol Biol Rep. 2024 Jun 13;51(1):732. doi: 10.1007/s11033-024-09655-7. https://pubmed.ncbi.nlm.nih.gov/38872006/
Harmaline is a harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7 and has been reduced across the 3,4 bond. It has a role as a oneirogen. It derives from a hydride of a harman. Harmaline has been reported in Passiflora phoenicia, Daphnia pulex, and other organisms with data available. LOTUS - the natural products occurrence database A beta-carboline alkaloid isolated from seeds of PEGANUM. View More
Therapeutic Uses Absorption, Distribution and Excretion Harmaline, a known type A monoamine oxidase (MAO) inhibitor in adult brain of various species was found to elevate whole brain levels of dopamine and serotonin (5-HT) in rat fetuses of mothers injected 2-4 hr before Caesarean delivery. Similar stimulatory effects were observed for the norepinephrine metabolite 3-methoxy-4-hydroxy-phenylglycol (MHPG), however, no significant effect was obtained for norepinephrine. The dopamine metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC) and the 5-HT metabolite 5-hydroxyindole acetic acid (5-HIAA) were decreased with the same treatment. These results imply that harmaline or one of its metabolites may cross the placental barrier to affect the fetal brain system not merely as a type A MAO inhibitor (i.e., relatively 5-HT-specific), but possibly also as a stimulatory agent for aldehyde reductase or catechol-O-methyltransferase (COMT) or alternately as an agent inhibiting the conjugation, efflux, or turnover of biogenic amine metabolites such as MHPG. PMID:2465555 Okonmah AD et al; Pharmacology 37 (3): 203-8 (1988) Metabolism / Metabolites The psychotropic beta-carboline alkaloids, showing high affinity for 5-hydroxytryptamine, dopamine, benzodiazepine, and imidazoline receptors and the stimulation of locus coeruleus neurons, are formed endogenously from tryptophan-derived indolealkylamines through the Pictet-Spengler condensation with aldehydes in both plants and mammals. Cytochromes P450 1A1 (18.5), 1A2 (20), and 2D6 (100) catalyzed the O-demethylation of harmaline, and CYP1A1 (98.5), CYP1A2 (35), CYP2C9 (16), CYP2C19 (30), and CYP2D6 (115) catalyzed that of harmine (relative activities). The dehydrogenation/aromatization of harmaline to harmine was not carried out by aromatase (CYP19), CYP1A2, CYP2C9, CYP2D6, CYP3A4, pooled recombinant cytochromes P450, or human liver microsomes (HLMs). Kinetic parameters were calculated for the O-demethylations mediated by each isozyme and by pooled HLMs. K(cat) (min(-1)) and Ku (uM) values for harmaline were: CYP1A1, 10.8 and 11.8; CYP1A2, 12.3 and 13.3; CYP2C9, 5.3 and 175; CYP2C19, 10.3 and 160; and CYP2D6, 39.9 and 1.4. Values for harmine were: CYP1A1, 45.2 and 52.2; CYP1A2, 9.2 and 14.7; CYP2C9, 11.9 and 117; CYP2C19, 21.4 and 121; and CYP2D6, 29.7 and 7.4. Inhibition studies using monoclonal antibodies confirmed that CYP1A2 and CYP2D6 were the major isozymes contributing to both harmaline (20% and 50%, respectively) and harmine (20% and 30%) O-demethylations in pooled HLMs. The turnover numbers for CYP2D6 are among the highest ever reported for a CYP2D6 substrate. Finally, CYP2D6-transgenic mice were found to have increased harmaline and harmine O-demethylase activities as compared with wild-type mice. These findings suggest a role for polymorphic CYP2D6 in the pharmacology and toxicology of harmine and harmaline. PMID:12649384 Yu AM et al; J Pharmacol Exp Ther 305 (1): 315-22 (2003) Mechanism of Action Three psychological active principles from the seeds of Peganum harmala L., harmine, harmaline and harmalol, showed vasorelaxant activities in isolated rat thoracic aorta preparations precontracted by phenylephrine or KCl with rank order of relaxation potency of harmine > harmaline > harmalol. The vasorelaxant effects of harmine and harmaline (but not harmalol) were attenuated by endothelium removal or pretreatment with a nitric oxide (NO) synthase Nomega-nitro-L-arginine methyl ester. In cultured rat aortic endothelial cells, harmine and harmaline (but not harmalol) increased NO release, which was dependent on the presence of external Ca2+. In endothelium-denuded preparations, pretreatment of harmine, harmaline or harmalol (3-30 microM) inhibited phenylephrine-induced contractions in a non-competitive manner. Receptor binding assays indicated that all 3 compounds interacted with cardiac alpha1-adrenoceptors with comparable affinities (Ki value around 31 - 36 microM), but only harmine weakly interacted with the cardiac 1,4-dihydropyridine binding site of L-type Ca2+ channels (Ki value of 408 microM). Therefore, the present results suggested that the vasorelaxant effects of harmine and harmaline are attributed to their actions on the endothelial cells to release NO and on the vascular smooth muscles to inhibit the contractions induced by the activation of receptor-linked and voltage-dependent Ca2+ channels. The vasorelaxant effect of harmalol was not endothelium-dependent. PMID:11325023 Shi CC et al; Jpn J Pharmacol 85 (3): 299-305 (2001) |
分子式 |
C13H19CLN2O3
|
---|---|
分子量 |
286.7546
|
精确质量 |
286.108
|
CAS号 |
6027-98-1
|
PubChem CID |
2723643
|
外观&性状 |
Typically exists as solid at room temperature
|
沸点 |
426.4ºC at 760 mmHg
|
熔点 |
232-240 °C
|
闪点 |
211.7ºC
|
来源 |
PEGANUM
|
LogP |
2.65
|
tPSA |
55.84
|
氢键供体(HBD)数目 |
4
|
氢键受体(HBA)数目 |
4
|
可旋转键数目(RBC) |
1
|
重原子数目 |
19
|
分子复杂度/Complexity |
302
|
定义原子立体中心数目 |
0
|
SMILES |
Cl[H].O(C([H])([H])[H])C1C([H])=C([H])C2=C(C=1[H])N([H])C1C(C([H])([H])[H])=NC([H])([H])C([H])([H])C=12.O([H])[H].O([H])[H]
|
InChi Key |
LCEKUHFBUFUSSY-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C13H14N2O.ClH.2H2O/c1-8-13-11(5-6-14-8)10-4-3-9(16-2)7-12(10)15-13;;;/h3-4,7,15H,5-6H2,1-2H3;1H;2*1H2
|
化学名 |
7-methoxy-1-methyl-4,9-dihydro-3H-pyrido[3,4-b]indole;dihydrate;hydrochloride
|
别名 |
Harmaline hydrochloride dihydrate; UNII-5B4DGH2M9R; 6027-98-1; 63885-08-5; 5B4DGH2M9R; 7-methoxy-1-methyl-4,9-dihydro-3H-pyrido[3,4-b]indole;dihydrate;hydrochloride; MFCD00150052; 7-Methoxy-1-methyl-4,9-dihydro-3H-pyrido[3,4-b]indole hydrochloride dihydrate;
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 3.4874 mL | 17.4368 mL | 34.8736 mL | |
5 mM | 0.6975 mL | 3.4874 mL | 6.9747 mL | |
10 mM | 0.3487 mL | 1.7437 mL | 3.4874 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。