| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 100mg |
|
||
| 250mg |
|
||
| 500mg |
|
||
| 1g |
|
||
| 5g |
|
||
| 10g |
|
||
| Other Sizes |
| 靶点 |
Precursor for creatine
|
|---|---|
| 体外研究 (In Vitro) |
胍乙酸(GAA)是一种内源性动物组织(包括肌肉和神经)的氨基酸衍生物,已被报道可增强肌肉性能。微小RNA(miRNA)是一种转录后调节因子,在营养物介导的肌发生中起着关键作用。然而,GAA对肌源性分化和骨骼肌生长的影响,以及miRNA在这些过程中的潜在调节机制尚未阐明。在本研究中,我们研究了GAA对C2C12细胞和小鼠增殖、分化和生长的影响。结果表明,GAA显著抑制成肌细胞增殖,下调细胞周期蛋白D1(CCND1)和细胞周期蛋白依赖性激酶4(CDK4)mRNA表达,上调细胞周期蛋白激酶抑制剂1A(P21)mRNA的表达。我们还证明,GAA处理刺激肌源分化1(MyoD)和肌生成素(MyoG)mRNA表达,导致肌管融合率增加。同时,补充GAA通过增加总肌球蛋白重链(MyHC)蛋白水平、肌管厚度和腓肠肌横截面积来促进肌管生长。此外,小RNA测序显示,在补充GAA后,共有8种miRNA,包括miR-133a-3p和miR-1a-3p簇,显示出差异表达。为了进一步研究miR-133a-3p和miR-1a-3p在GAA诱导的骨骼肌生长中的作用,我们将miR-133a-3p和模拟miR-1a-3c转染到肌管中,肌管也诱导肌肉生长。通过生物信息学和双荧光素酶报告子系统,确定了miR-133a-3p和miR-1a-3p的靶基因。这两种miRNA被证明通过抑制靶基因表达来调节Akt/mTOR/S6K信号通路。总之,这些发现表明,补充GAA可以通过miR-133a-3p和miR-1a-3p诱导的AKT/mTOR/S6K信号通路的激活来促进成肌细胞分化和骨骼肌生长[2]。
|
| 体内研究 (In Vivo) |
胍乙酸(GAA)在肝脏和肾脏中由精氨酸和甘氨酸合成,随后被S-腺苷甲硫氨酸甲基化形成肌酸。进行了四项生物测定,以确定GAA作为日粮中Arg替代品的能力。在为期9天的电池饲养试验中,肉鸡被喂食缺乏精氨酸的右旋酪蛋白(0.88%精氨酸)或玉米-玉米副产品豆粕(1.0%精氨酸。由于添加了精氨酸、GAA或肌酸,体重增加和G:F增加(P<0.01),葡萄糖-酪蛋白饮食中的精氨酸明显不足。添加GAA的最佳水平为日粮的0.12%,但当添加到Arg充足的日粮中时,该水平的GAA或1.0%的creatin-H(2)O并不能改善生长性能。第二项测定证实了在补充l-Arg和GAA的2×2因子安排中的最佳Arg水平。使用基于玉米、玉米谷蛋白粉、带可溶性的蒸馏干谷物和豆粕的实用型饮食,添加0.25%精氨酸、0.12%GAA或0.15%肌酸·H(2)O可使G:F有类似的改善(P<0.05)。这些结果表明,添加0.12%的GAA,如肌酸,在喂食精氨酸缺乏饮食的幼鸡中产生一致的生长反应。为了提供GAA作为膳食精氨酸替代物的能力的进一步证据,在不存在或存在0.12%GAA的情况下,用7个分级剂量的精氨酸补充右旋酪蛋白饮食(总共14个饮食)。观察到体重增加的二次型(P<0.01)反应和对补充Arg的G:F反应。在不存在和存在0.12%GAA的情况下,估计了类似的补充Arg需求,但与Arg充足的饮食相比,当添加到Arg缺乏的饮食中时,GAA引起G:F的更大改善(P<0.05)。总之,这些数据表明,GAA可以作为幼鸡膳食精氨酸的有效替代品[1]。
|
| 细胞实验 |
小鼠骨骼肌细胞系C2C12在生长培养基(GM)中培养,生长培养基含有高糖DMEM,补充10%胎牛血清、100000单位/L青霉素钠和100 mg/L硫酸链霉素,温度为37°C,湿度为5%CO2。用含有高糖DMEM和2%马血清的分化培养基(DM)诱导C2C12成肌细胞8天。GAA以20mmol/L的最终浓度可溶于GM或DM。雷帕霉素(Rap)以100nmol/L的最终浓度在DMSO中稀释;DMSO在培养物中的最终浓度小于0.1%[2]。
细胞增殖比率测定。[2] 通过细胞计数试剂盒-8(CCK-8)和EdU细胞增殖测定试剂盒检测C2C12细胞的增殖率。将C2C12细胞接种在96孔细胞培养板中,并在含有0mM、5mM、10mM或20mM GAA的GM中维持48小时;每12小时更换一次培养基。对于CCK-8,向培养基中加入10μL CCK-8试剂,1小时后,在450nm处测量光密度。对于EdU细胞增殖测定,用不同浓度的GAA处理细胞,当细胞达到约80%汇合时,将10μM EdU加入培养基中并孵育2小时。根据制造商的说明进行EdU染色;DAPI对细胞核进行染色。染色的细胞通过Olympus IX53显微镜成像。 蛋白质印迹分析。[2] 简言之,将细胞接种在六孔细胞培养板中。分化4天后,如所述将细胞与Rap或GAA孵育48小时。然后将细胞在PBS中漂洗三次,并在含有1mM PMSF和0.02%蛋白酶磷酸酶抑制剂的200μL RIPA裂解缓冲液中裂解。对于组织,将25mg腓肠肌在500μL RIPA裂解缓冲液中匀浆,该缓冲液含有1mM PMSF和0.02%蛋白酶磷酸酶抑制剂。然后,将均化的液体在4°C下振荡30分钟,并通过12000×g离心15分钟从悬浮液中去除不溶性物质。使用BCA蛋白质测定法定量总蛋白质浓度。用10%十二烷基硫酸钠(SDS)聚丙烯酰胺电泳凝胶分离等分试样50μg蛋白质悬浮液后,使用Trans-Blot Turbo转移系统将蛋白质转移到聚偏二氟乙烯(PVDF)膜上,然后在室温下用含0.1%吐温20的Tris缓冲盐水中的5%(w/v)无脂肪干牛奶封闭2小时。然后将PVDF膜与所示抗体在4°C下孵育过夜,然后与第二抗体在室温下孵育1小时。使用ChemiDoc MP成像系统测量蛋白质表达,并将其标准化为微管蛋白表达。 |
| 动物实验 |
Animals and Muscle Collection[2]
The Kunming male mice (n = 30) at 3 weeks of age were purchased from DASHUO Medical Laboratory Animal Center. The mice were given free access to food and water under constant 12 h light and 12 h dark cycle at a temperature of 23 °C ± 3 °C and relative humidity of 70% ± 10% throughout experimental period. After one week of acclimatization, the mice were randomly divided into three groups (n = 10 in each group) and supplemented with different concentrations of GAA (0%, 1% and 2%), dissolved in drinking water for 8 weeks. At the end of the experiment, serum was collected and the gastrocnemius muscle was taken for further testing. The serum was stored at −80 °C, the muscle stored in liquid nitrogen. |
| 药代性质 (ADME/PK) |
Metabolism / Metabolites
Guanidino acetic acid (GAA) is synthesized in the liver and kidney from Arg and Gly and subsequently methylated by S-adenosylmethionine to form creatine. The conversion of guaniodacetate to creatinine in the liver causes a depletion of methyl groups. This causes homocysteine levels to rise, which has been shown to produce cardiovascular and skeletal problems. |
| 毒性/毒理 (Toxicokinetics/TK) |
Toxicity Summary
Uremic toxins such as guanidinoacetic acid are actively transported into the kidneys via organic ion transporters (especially OAT3). Increased levels of uremic toxins can stimulate the production of reactive oxygen species. This seems to be mediated by the direct binding or inhibition by uremic toxins of the enzyme NADPH oxidase (especially NOX4 which is abundant in the kidneys and heart) (A7868). Reactive oxygen species can induce several different DNA methyltransferases (DNMTs) which are involved in the silencing of a protein known as KLOTHO. KLOTHO has been identified as having important roles in anti-aging, mineral metabolism, and vitamin D metabolism. A number of studies have indicated that KLOTHO mRNA and protein levels are reduced during acute or chronic kidney diseases in response to high local levels of reactive oxygen species (A7869) |
| 参考文献 | |
| 其他信息 |
Guanidinoacetic acid is the N-amidino derivative of glycine. It has a role as a human metabolite, a mouse metabolite, a nutraceutical, a rat metabolite and a bacterial metabolite. It is a conjugate acid of a guanidinoacetate. It is a tautomer of a guanidinoacetic acid zwitterion.
Glycocyamine has been reported in Citrus reticulata, Prunus persica, and other organisms with data available. Glycocyamine is a naturally-occurring derivative of glycine and a metabolic precursor of creatine. Glycocyamine, also known as guanidinoacetic acid (GAA), is catalyzed by guanidinoacetate N-methyltransferase to form creatine. Creatine, in phosphate form, helps supply energy to muscle cells for contraction. After intense effort, when adenosine triphosphate (ATP) deposits are depleted, creatine phosphate donates phosphate groups toward the fast synthesis of ATP. Dietary supplementation with GAA may improve muscle wasting associated with cancer and other chronic diseases. Guanidinoacetic acid is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Guanidoacetic acid is a metabolite in the Urea cycle and metabolism of amino groups, and in the metabolic pathways of several amino acids. This includes glycine, serine, threonine, arginine and proline metabolism. Guanidinoacetic acid is also a precursor of creatine, an essential substrate for muscle energy metabolism. |
| 分子式 |
C3H7N3O2
|
|---|---|
| 分子量 |
117.12
|
| 精确质量 |
117.053
|
| 元素分析 |
C, 30.77; H, 6.03; N, 35.88; O, 27.32
|
| CAS号 |
352-97-6
|
| PubChem CID |
763
|
| 外观&性状 |
Typically exists as white to off-white solids at room temperature
|
| 密度 |
1.6±0.1 g/cm3
|
| 沸点 |
294.2±42.0 °C at 760 mmHg
|
| 熔点 |
300 °C(lit.)
|
| 闪点 |
131.7±27.9 °C
|
| 蒸汽压 |
0.0±1.3 mmHg at 25°C
|
| 折射率 |
1.596
|
| LogP |
-1.85
|
| tPSA |
99.2
|
| 氢键供体(HBD)数目 |
3
|
| 氢键受体(HBA)数目 |
3
|
| 可旋转键数目(RBC) |
2
|
| 重原子数目 |
8
|
| 分子复杂度/Complexity |
116
|
| 定义原子立体中心数目 |
0
|
| SMILES |
O([H])C(C([H])([H])/N=C(\N([H])[H])/N([H])[H])=O
|
| InChi Key |
BPMFZUMJYQTVII-UHFFFAOYSA-N
|
| InChi Code |
InChI=1S/C3H7N3O2/c4-3(5)6-1-2(7)8/h1H2,(H,7,8)(H4,4,5,6)
|
| 化学名 |
2-(diaminomethylideneamino)acetic acid
|
| 别名 |
AI3 17119; AI3-17119; glycocyamine; 352-97-6; guanidinoacetic acid; Guanidineacetic acid; 2-Guanidinoacetic acid; Guanidoacetic acid; N-amidinoglycine; Betacyamine; Glycocyamine
|
| HS Tariff Code |
2934.99.9001
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
1M HCl : 50 mg/mL (~426.95 mM)
H2O : ~5 mg/mL (~42.69 mM) |
|---|---|
| 溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 8.5383 mL | 42.6913 mL | 85.3825 mL | |
| 5 mM | 1.7077 mL | 8.5383 mL | 17.0765 mL | |
| 10 mM | 0.8538 mL | 4.2691 mL | 8.5383 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。