Lusaperidone

别名: R107474; R-107474; R 107474
目录号: V31622 纯度: ≥98%
Lusaperidone (R107474; R-107474; R 107474) 是一种有效的 α2 肾上腺素能受体拮抗剂,对 α2A 和 α2C 的 Kis 分别为 0.13 和 0.15 nM。
Lusaperidone CAS号: 214548-46-6
产品类别: Adrenergic Receptor
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
5mg
10mg
25mg
50mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
产品描述
Lusaperidone (R107474;R-107474;R 107474) 是一种有效的 α2 肾上腺素能受体拮抗剂,对 α2A 和 α2C 的 Kis 分别为 0.13 和 0.15 nM。
生物活性&实验参考方法
靶点
α2A adrenergic receptor ( Ki = 0.13 nM ); α2C adrenergic receptor ( Ki = 0.15 nM )
- α₂-adrenoceptors (including hα₂A, hα₂B, hα₂C subtypes): R107474 has subnanomolar affinity for hα₂A-adrenoceptors (Ki = 0.13 nM) and hα₂C-adrenoceptors (Ki = 0.15 nM), nanomolar affinity for hα₂B-adrenoceptors (Ki = 1 nM) [1]
- 5-hydroxytryptamine₇ (h5-HT₇) receptors: R107474 shows nanomolar affinity (Ki = 5 nM) [1]
- Other receptors: R107474 interacts weakly with dopamine receptors (hD₂L, hD₃, hD₄) and other 5-HT subtypes (h5-HT₁D, h5-HT₁F, h5-HT₂A, h5-HT₂C, h5-HT₅A) with Ki values ranging from 81 to 920 nM [1]
体外研究 (In Vitro)
Lusaperidone 对 α2A 和 α2C 肾上腺素受体具有亚纳摩尔亲和力(Ki 分别为 0.13 和 0.15 nM),对 hα2B 肾上腺素受体和 h5-HT7 受体具有纳摩尔亲和力(Ki 分别为 1 和 5 nM)。 Lusaperidone 与多巴胺-hD2L、-hD3 和 -hD4、h5-HT1D-、h5-HT1F-、h5-HT2A-、h5-HT2C- 和 h5-HT5A 受体相互作用较弱(Ki 值范围在 81 至 920 nM 之间)。卢沙哌酮经测试浓度高达 10 μM,仅在微摩尔浓度下与本研究中测试的任何其他受体或转运蛋白结合位点发生相互作用,或者根本不发生相互作用。卢沙哌酮已被证明可以逆转可乐定诱导的对细胞系中表达的人 α2A 和 α2C 肾上腺素受体(Kb 分别为 2.8 和 4.4 nM)介导的环 AMP 产生的抑制,并且是两种受体亚型的完全拮抗剂[1]。
1. 受体结合实验:利用脑组织或表达克隆人受体的细胞制备膜制剂,检测R107474 对多种神经递质受体、药物受体、离子通道、肽受体及单胺转运体的结合抑制能力。当测试浓度高达10 μM时,R107474 仅与上述提及的受体(α₂-肾上腺素能受体、h5-HT₇受体、多巴胺受体及部分5-羟色胺亚型受体)发生相互作用,对其他测试受体/转运体无相互作用或仅在微摩尔浓度下发生相互作用 [1]
体内研究 (In Vivo)
卢沙哌酮占据α2A和α2C肾上腺素能受体,ED50分别为0.014 mg/kg sc (0.009-0.019)和0.026 mg/kg sc (0.022-0.030)。 R107474体内静脉给药后的摄取非常迅速;在大多数组织(包括大脑)中,示踪剂注射后 5 分钟达到最大浓度[1]。
1. α₂-肾上腺素能受体占据实验:动物皮下注射R107474 后,于给药1小时进行离体放射自显影,检测α₂A-和α₂C-肾上腺素能受体的占据情况。α₂A-肾上腺素能受体占据的ED₅₀(95%置信区间)为0.014 mg/kg 皮下注射(0.009–0.019),α₂C-肾上腺素能受体占据的ED₅₀(95%置信区间)为0.026 mg/kg 皮下注射(0.022–0.030)[1]
2. [¹¹C]R107474 在大鼠体内的生物分布:大鼠静脉注射[¹¹C]R107474 后,示踪剂在多数组织(包括大脑)中快速摄取,注射后5分钟达到最高浓度。大脑中放射性摄取最高的区域为隔区(注射后5分钟 3.54 ± 0.52 ID/g)和内嗅皮质(注射后5分钟 1.57 ± 0.10 ID/g)。隔区和内嗅皮质与小脑的浓度比随时间逐渐升高,注射后30分钟分别为5.38 ± 0.45和3.43 ± 0.24,这一现象源于示踪剂的快速摄取和缓慢洗脱 [1]
3. 体内阻断实验:将非选择性α₂-肾上腺素能受体拮抗剂米氮平与[¹¹C]R107474 联合给药,可特异性抑制[¹¹C]R107474 在大鼠大脑特定区域的结合 [1]
酶活实验
1. 受体结合实验流程:从脑组织或稳定表达克隆人受体(如α₂-肾上腺素能受体亚型、5-羟色胺受体、多巴胺受体)的细胞中制备膜制剂。将膜样品与不同浓度的R107474 及各靶受体对应的放射性标记配体共同孵育,孵育后分离未结合的放射性配体与膜结合的配体,通过检测结合部分的放射性强度,确定R107474 对配体-受体结合的抑制率,并根据抑制曲线计算Ki值,以评估R107474 对各受体的亲和力 [1]
细胞实验
1. α₂-肾上腺素能受体占据实验:给动物皮下注射不同剂量的R107474,给药1小时后处死动物,取出大脑并制备组织切片。对切片进行离体放射自显影,使用特异性放射性标记配体可视化并定量α₂A-和α₂C-肾上腺素能受体的占据情况 [1]
2. 大鼠生物分布实验:选用雄性Wistar大鼠,静脉注射[¹¹C]R107474。在注射后预设时间点(5、15、30、60分钟)处死大鼠,收集多种组织(包括隔区、内嗅皮质、小脑等大脑区域及其他外周组织),检测各组织样品的放射性强度,以每克组织注射剂量百分比(ID/g)表示摄取量 [1]
3. 体内阻断实验:大鼠在静脉注射[¹¹C]R107474 前预先给予非选择性α₂-肾上腺素能受体拮抗剂米氮平,指定时间后处死大鼠,收集大脑组织并检测特定区域[¹¹C]R107474 的放射性强度,与未预先给予米氮平的大鼠进行对比,计算结合抑制率 [1]
动物实验
Rats: Male Wistar rats (weighing 200–250 g) are anesthetized with diethyl ether, and radiolabeled lusaperidone (24–28 GBq/μmol) is injected into their tail vein. The rats were given injections of 30–40 MBq in 300 μL saline containing 10% (v/v) ethanol at the beginning of the experiment. Under the influence of diethyl ether anesthesia, the rats are killed by cervical dislocation at 5, 10, 20, and 30 minutes after injection. After a cardiac puncture, a blood sample is obtained, and a few chosen tissues are quickly dissected and weighed. Radioactivity is quantified [1].
1. α₂-adrenoceptor occupancy assay: Animals were administered R107474 via subcutaneous injection at different doses. One hour after administration, the animals were sacrificed, and their brains were removed and processed into tissue sections. Ex vivo autoradiography was performed on the sections using appropriate radiolabeled ligands to visualize and quantify α₂A- and α₂C-adrenoceptor occupancy [1]
2. Biodistribution assay in rats: Male Wistar rats were used for the experiment. [¹¹C]R107474 was administered to rats via intravenous injection. At predetermined time points (5, 15, 30, 60 minutes post-injection), the rats were sacrificed, and various tissues (including brain regions such as septum, entorhinal cortex, cerebellum, and other peripheral tissues) were collected. The radioactivity in each tissue sample was measured, and the uptake was expressed as percentage injected dose per gram of tissue (ID/g) [1]
3. In vivo blocking experiment: Rats were pre-administered mirtazapine (a non-selective α₂-adrenoceptor antagonist) before intravenous injection of [¹¹C]R107474. After the specified time, the rats were sacrificed, and brain tissues were collected to measure the radioactivity of [¹¹C]R107474 in selective brain regions. The binding inhibition rate was calculated by comparing with rats not pre-administered mirtazapine [1]
药代性质 (ADME/PK)
1. Tissue distribution: After intravenous administration of [¹¹C]R107474 in rats, the tracer was rapidly taken up by most tissues, with maximum concentration achieved at 5 minutes post-injection in the brain and other tissues. In the brain, the highest uptake was in the septum and entorhinal cortex, which is consistent with the known distribution of α₂-adrenoceptors. The tissue/cerebellum concentration ratios for septum and entorhinal cortex increased over time (up to 30 minutes post-injection) due to rapid uptake and slow washout [1]
参考文献

[1]. Synthesis and biodistribution of [11C]R107474, a new radiolabeled alpha2-adrenoceptor antagonist. Bioorg Med Chem. 2006 Jul 1;14(13):4526-34.

其他信息
1. R107474 is a potent and relatively selective α₂-adrenoceptor antagonist with the chemical structure 2-methyl-3-[2-(1,2,3,4-tetrahydrobenzo[4,5]furo[3,2-c]pyridin-2-yl)ethyl]-4H-pyrido[1,2-a]pyrimidin-4-one [1]
2. [¹¹C]R107474 was synthesized via a Pictet-Spengler reaction with [¹¹C]formaldehyde, achieving an overall decay-corrected radiochemical yield of 33 ± 4%, a total synthesis time of 55 minutes, and a specific activity of 24–28 GBq/μmol [1]
3. [¹¹C]R107474 is a potential positron emission tomography (PET) ligand for studying central α₂-adrenoceptors due to its specific binding to α₂-adrenoceptors and favorable biodistribution characteristics in the brain [1]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C₂₂H₂₁N₃O₂
分子量
359.42
精确质量
359.163
元素分析
C, 73.52; H, 5.89; N, 11.69; O, 8.90
CAS号
214548-46-6
PubChem CID
3045401
外观&性状
White to light yellow solid powder
密度
1.31g/cm3
沸点
538.3ºC at 760 mmHg
闪点
279.4ºC
蒸汽压
1.17E-11mmHg at 25°C
折射率
1.688
LogP
3.287
tPSA
50.75
氢键供体(HBD)数目
0
氢键受体(HBA)数目
4
可旋转键数目(RBC)
3
重原子数目
27
分子复杂度/Complexity
751
定义原子立体中心数目
0
SMILES
O=C1C(CCN2CCC(OC3=CC=CC=C34)=C4C2)=C(C)N=C5N1C=CC=C5
InChi Key
ZYXHQIPQIKTEDI-UHFFFAOYSA-N
InChi Code
InChI=1S/C22H21N3O2/c1-15-16(22(26)25-11-5-4-8-21(25)23-15)9-12-24-13-10-20-18(14-24)17-6-2-3-7-19(17)27-20/h2-8,11H,9-10,12-14H2,1H3
化学名
3-[2-(3,4-dihydro-1H-[1]benzofuro[3,2-c]pyridin-2-yl)ethyl]-2-methylpyrido[1,2-a]pyrimidin-4-one
别名
R107474; R-107474; R 107474
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~3.45 mg/mL (~9.6 mM)
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.7823 mL 13.9113 mL 27.8226 mL
5 mM 0.5565 mL 2.7823 mL 5.5645 mL
10 mM 0.2782 mL 1.3911 mL 2.7823 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

联系我们