规格 | 价格 | 库存 | 数量 |
---|---|---|---|
100mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
毒性/毒理 (Toxicokinetics/TK) |
Interactions
/Investigators/ studied the effects of methyl jasmonate in combination with sucrose on defense-related gene expression, stilbene and anthocyanin production in grapevine cell suspensions. The methyl jasmonate/sucrose treatment was effective in stimulating phenylalanine ammonia lyase, chalcone synthase, stilbene synthase, UDP-glucose: flavonoid-O-glucosyltransferase, proteinase inhibitor and chitinase gene expression, and triggered accumulation of both piceids and anthocyanins in cells, and trans-resveratrol and piceids in the extracellular medium... Capsicum annuum /(C. annuum)/ suspension cell cultures were used to evaluate the effect of cyclodextrins and methyl jasmonate as elicitors of defense responses. The induced defense responses included the accumulation of sesquiterpenes and phytosterols and the activation of pathogenesis-related proteins, leading to reinforcement and modification of the cell wall architecture during elicitation and protection cells against biotic stress. The results showed that the addition of both cyclodextrins and methyl jasmonate induced the biosynthesis of two sesquiterpenes, aromadendrene and solavetivone. This response was clearly synergistic since the increase in the levels of these compounds was much greater in the presence of both elicitors than when they were used separately. The biosynthesis of phytosterols was also induced in the combined treatment, as the result of an additive effect. Likewise, the exogenous application of methyl jasmonate induced the accumulation of pathogenesis-related proteins. The analysis of the extracellular proteome showed the presence of amino acid sequences homologous to PR1 and 4, NtPRp27-like proteins and class I chitinases, peroxidases and the hydrolytic enzymes LEXYL1 and 2, arabinosidases, pectinases, nectarin IV and leucin-rich repeat protein, which suggests that methyl jasmonate plays a role in mediating defense-related gene product expression in C. annuum. Apart from these methyl jamonate-induced proteins, other PR proteins were found in both the control and elicited cell cultures of C. annuum. These included class IV chitinases, beta-1,3-glucanases, thaumatin-like proteins and peroxidases, suggesting that their expression is mainly constitutive since they are involved in growth, development and defense processes. Boron is an essential plant micronutrient, but it is phytotoxic if present in excessive amounts in soil for certain plants such as Artemisia annua L. /(A. annua)/ that contains artemisinin (an important antimalarial drug) in its areal parts. Artemisinin is a sesquiterpene lactone with an endoperoxide bridge... the present research was conducted to determine whether the exogenous application of methyl jasmonate (MeJA) could combat the ill effects of excessive /Boron stress/ (B) present in the soil. According to the results obtained, the B toxicity induced oxidative stress and reduced the stem height as well as fresh and dry masses of the plant remarkably. The excessive amounts of soil B also lowered the net photosynthetic rate, stomatal conductance, internal CO2 concentration and total chlorophyll content in the leaves. In contrast, the foliar application of MeJA enhanced the growth and photosynthetic efficiency both in the stressed and non-stressed plants. The excessive B levels also increased the activities of antioxidant enzymes, such as catalase, peroxidase and superoxide dismutase... the MeJA application to the stressed plants reduced the amount of lipid peroxidation and stimulated the synthesis of antioxidant enzymes, enhancing the content and yield of artemisinin as well. Thus, it was concluded that MeJA might be utilized in mitigating the B toxicity and improving the content and yield of artemisinin in A. annua plant. |
---|---|
参考文献 | |
其他信息 |
(-)-methyl jasmonate is a jasmonate ester that is the methyl ester of jasmonic acid. It has a role as a member of jasmonates, a plant metabolite and a plant hormone. It is a jasmonate ester, a methyl ester and a member of Jasmonate derivatives.
Methyl jasmonate has been reported in Solanum tuberosum, Tripterygium wilfordii, and other organisms with data available. Mechanism of Action Using the tomato pathotype of Alternaria alternata (Aa) and its AAL-toxin/tomato interaction as a model system, /the authors/ demonstrate a possible role for /jasmonic acid/ JA in susceptibility of plants against pathogens, which utilize host-specific toxins as virulence effectors. Disease development and in planta growth of the tomato pathotype of Aa were decreased in the def1 mutant, defective in biosynthesis of JA, compared with the wild-type (WT) cultivar. Exogenous methyl jasmonate (MeJA) application restored pathogen disease symptoms to the def1 mutant and led to increased disease in the WT. On the other hand, necrotic cell death was similarly induced by AAL-toxin both on def1 and WT, and MeJA application to the tomatoes did not affect the degree of cell death by the toxin. These results indicate that the JA-dependent signaling pathway is not involved in host basal defense responses against the tomato pathotype of Aa, but rather might affect pathogen acceptability via a toxin-independent manner. Data further suggest that JA has a promotional effect on susceptibility of tomato to toxigenic and necrotrophic pathogens, such that pathogens might utilize the JA signaling pathway for successful infection. ...WRKY plant-specific transcription factors, as one of the flagellin-inducible genes in /its non-host/ A. thaliana. Expression of WRKY41 is induced by inoculation with the incompatible pathogen P. syringae pv. tomato DC3000 (Pto) possessing AvrRpt2 and the non-host pathogens... Arabidopsis overexpressing WRKY41 showed enhanced resistance to the Pto wild-type but increased susceptibility to Erwinia carotovora EC1. WRKY41-overexpressing Arabidopsis constitutively expresses the PR5 gene, but suppresses the methyl jasmonate-induced PDF1.2 gene expression. These results demonstrate that WRKY41 may be a key regulator in the cross talk of salicylic acid and jasmonic acid pathways. Induction of cell death is an important component of plant defense against pathogens. There have been many reports on the role of phytohormones in pathogen-induced cell death, but jasmonic acid (JA) has not been implicated as a regulator of the response. Here, /investigators/ report the function of NbHB1, Nicotiana benthamiana homeobox1, in pathogen-induced cell death in connection with JA signaling. Involvement of NbHB1 in cell death was analyzed by gain- and loss-of-function studies using Agrobacterium-mediated transient overexpression and virus-induced gene silencing, respectively. Expression of NbHB1 following pathogen inoculations and various treatments was monitored by reverse transcription polymerase chain reaction. Transcript levels of NbHB1 were upregulated by infection with virulent and avirulent bacterial pathogens. Ectopic expression of NbHB1 accelerated cell death following treatment with darkness, methyl jasmonate, or pathogen inoculation. Conversely, when NbHB1 was silenced, pathogen-induced cell death was delayed. NbHB1-induced cell death was also delayed by silencing of NbCOI1, indicating a requirement for JA-mediated signaling. Overexpression of the domain-deleted proteins of NbHB1 revealed that the homeodomain, leucine zipper, and part of the variable N-terminal region were necessary for NbHB1 functionality. These results strongly suggest the role of NbHB1 in pathogen-induced plant cell death via the JA-mediated signaling pathway. In this study, /the authors/ employed high throughput Illumina sequencing to identify miRNAs from Taxus chinensis (T. chinensis) cells to investigate the effect of the taxoid elicitor methyl jasmonate (MJ) on miRNA expression. In a dataset of approximately 6.6 million sequences, a total of 58 miRNAs, belonging to 25 families were identified. A majority of them are conserved between angiosperms and gymnosperms. However, two miRNAs (miR1310 and miR1314) appear gymnosperm-specific, with miR1314 likely to exist as a cluster. MJ treatment significantly affected the expression of specific miRNAs; 14 miRNAs from 7 different families (miR156, miR168, miR169, miR172, miR396, miR480 and mir1310) were down regulated whereas 3 miRNAs from 2 families (miR164 and miR390) were up regulated. For more Mechanism of Action (Complete) data for Methyl Jasmonate (13 total), please visit the HSDB record page. |
分子式 |
C13H20O3
|
---|---|
分子量 |
224.2961
|
精确质量 |
224.141
|
CAS号 |
1211-29-6
|
PubChem CID |
5281929
|
外观&性状 |
Colorless liquid
|
密度 |
1.0±0.1 g/cm3
|
沸点 |
302.9±15.0 °C at 760 mmHg
|
熔点 |
25 °C
|
闪点 |
128.6±20.4 °C
|
蒸汽压 |
0.0±0.6 mmHg at 25°C
|
折射率 |
1.469
|
LogP |
2.12
|
tPSA |
43.37
|
氢键供体(HBD)数目 |
0
|
氢键受体(HBA)数目 |
3
|
可旋转键数目(RBC) |
6
|
重原子数目 |
16
|
分子复杂度/Complexity |
281
|
定义原子立体中心数目 |
2
|
SMILES |
CC/C=C\C[C@@H]1[C@H](CCC1=O)CC(=O)OC
|
InChi Key |
GEWDNTWNSAZUDX-WQMVXFAESA-N
|
InChi Code |
InChI=1S/C13H20O3/c1-3-4-5-6-11-10(7-8-12(11)14)9-13(15)16-2/h4-5,10-11H,3,6-9H2,1-2H3/b5-4-/t10-,11-/m1/s1
|
化学名 |
methyl 2-[(1R,2R)-3-oxo-2-[(Z)-pent-2-enyl]cyclopentyl]acetate
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 4.4583 mL | 22.2916 mL | 44.5831 mL | |
5 mM | 0.8917 mL | 4.4583 mL | 8.9166 mL | |
10 mM | 0.4458 mL | 2.2292 mL | 4.4583 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。