| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 50mg |
|
||
| 100mg |
|
||
| Other Sizes |
| 药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
Most organophosphate compounds are ... absorbed from skin, conjunctiva, gastrointestinal tract, & lung. /Organophosphate compounds/ The rate of dermal absorption /of organophosphorus pesticides/ may be ... influenced by the solvent used. /Organophosphorus pesticides/ Many of the organophosphorus insecticides are excreted in the milk ... /Organophosphorus insecticides/ Following their absorption, most organophosphorus cmpd are excreted almost entirely as hydrolysis products in the urine. /Anticholinesterase agents/ For more Absorption, Distribution and Excretion (Complete) data for PHENTHOATE (6 total), please visit the HSDB record page. Metabolism / Metabolites ELSAN DEGRADED RAPIDLY IN /CABBAGE SEEDLING, STRAWBERRY & APPLE FRUIT/ ... & WAS HYDROLYZED TO NON-TOXIC DERIVATIVES. MAIN METABOLITES ... WERE ELSAN CARBOXY DERIVATIVES, MANDELIC ACID & BIS(CARBETHOXYBENZYL)DISULFIDE. MAJOR URINARY METABOLITES /OF PHENTHOATE IN MICE/ @ DOSAGE OF 30 MG/KG WERE THE O-DEMETHYLATED ACID (25.8%), THE O-DEMETHYLATED OXON ACID (18.4%) & DIMETHYL PHOSPHORODITHIONATE (16.9%). INITIAL PRODUCT OF P-S CLEAVAGE ... WAS FURTHER METABOLIZED INTO CORRESPONDING SULFIDE, MANDELIC ACID, & S-METHYLATED DERIV. In plants, there is oxidation to the thiophosphate, followed by hydrolysis. Identified metabolites are phosphoric acid, dimethyl and monomethyl phosphate. Five metabolites were detected in the plasma and urine of a patient following ingestion of the organophosphate insecticide, phenthoate. Intact phenthoate was detected only in gastric lavage fluid. After methylation of acidic extracts of plasma and urine, phenthoate acid, demethyl phenthoate, demethyl phenthoate oxon acid, demethyl phenthoate S-isomer, and demethyl phenthoate acid S-isomer were identified with synthesized phenthoate analogues by gas chromatography and gas chromatograph-mass spectrometry. The main metabolites were phenthoate acid and demethyl phenthoate oxon acid. Although demethyl phenthoate oxon acid was a significant metabolite, no phenthoate oxon, phenthoate oxon acid or demethyl phenthoate oxon were detected. If the oxon was formed in the patient, it may have been rapidly degraded by carboxylesterase or glutathione transferase to demethyl phenthoate oxon acid. For more Metabolism/Metabolites (Complete) data for PHENTHOATE (7 total), please visit the HSDB record page. |
|---|---|
| 毒性/毒理 (Toxicokinetics/TK) |
Toxicity Data
LC50 (rat) = 59 mg/m3/4h Interactions Phenthoate ... was rapidly hydrolyzed by rat liver and plasma carboxylesterases to the corresponding non-toxic metabolite, phenthoate acid. A partially purified enzyme isolated from rat liver microsomes was 7-fold more effective in hydrolyzed phenthoate than the microsomal fraction. O,S,S-Trimethyl phosphorodithioate (TMPDT) and O,O,S-trimethyl phosphorothioate (TMPT), 2 impurities present in technical formulations of phenthoate, were examined for their inhibiting effects on the esterase degradation of (phenyl-14)C-phenthoate in vitro. Incubation of (14)C-phenthoate with rat liver and plasma carboxylesterases in the presence of these impurities greatly diminished the amount of phenthoate acid formed. TMPDT was superior in its inhibitory action against rat liver carboxylesterase to that of TMPT. TMPDT was equipotent in inhibiting crude rat liver and plasma carboxylesterases than rat liver carboxylesterases. The in vitro metabolism of phenthoate (O,O-dimethyl S-(alpha-(carboethoxy)benzyl)phosphorodithioate) was followed in rats after oral administration of a nontoxic dose of 100 mg/kg. The same metabolic study was conducted following coadministration of 0.5% O,S,S-trimethyl phosphorodithioate (OSS-Me). When administered alone, phenthoate was metabolized principally by carboethoxy ester hydrolysis and cleavage of the P-O and C-S bonds, resulting in at least 6 metabolites. The primary urinary metabolite excreted was phenthoate acid. Coadministration of 0.5% OSS-Me did not alter the types of metabolites excreted. However, a reduction of the carboxylesterase-catalyzed product (phenthoate acid) was observed, indicating that the enzyme responsible for the major pathway of phenthoate detoxication was inhibited. The levels of total lipids, free fatty acids, cholesterol, and lipase activity were studied in selected tissues of Channa punctatus Bloch during individual and combined exposures of carbaryl and phenthoate. The total lipid levels decreased with elevated levels of free fatty acids and lipase activity during all exposures, suggesting increased lipid hydrolysis to derive energy as an attempt to face the pesticide toxic stress. The cholesterol levels showed an elevated trend. ... The effect produced by carbaryl + phenthoate treatment remained higher than either of the pesticides alone, suggesting the manifestation of an additive effect. Some phenothiazines may antagonize & some may potentiate the toxic anticholinesterase effects of ... /organophosphorus insecticides/. /Organophosphate cholinesterase inhibitors/ For more Interactions (Complete) data for PHENTHOATE (7 total), please visit the HSDB record page. Non-Human Toxicity Values LD50 MOUSE ORAL 350-400 MG/KG /TECHNICAL PRODUCT/ LD50 RAT ORAL 300-400 MG/KG /TECHNICAL PRODUCT/ LD50 Rat oral 77.7 mg/kg LD50 Rat oral 118 mg/kg For more Non-Human Toxicity Values (Complete) data for PHENTHOATE (10 total), please visit the HSDB record page. |
| 参考文献 | |
| 其他信息 |
Phenthoate is an organic thiophosphate that is ethyl mandelate in which the hydroxy group has been replaced by a (dimethoxyphosphorothioyl)sulfanediyl group. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an acaricide and an agrochemical. It is an organic thiophosphate, an organothiophosphate insecticide and an ethyl ester.
Phenthoate is a synthetic organic thiophosphate compound and organophosphate acetylcholinesterase inhibitor that is used as a pesticide. It is characterized as a colorless crystalline solid with an aromatic odor, and exposure occurs by inhalation, ingestion, or contact. Mechanism of Action Cholinesterase inhibitor. The cardiovascular actions of anticholinesterase agents are complex, since they reflect both ganglionic and postganglionic effects of accumulated ACh on the heart and blood vessels. The predominant effect on the heart from the peripheral action of accumulated ACh is bradycardia, resulting in a fall in cardiac output. Higher doses usually cause a fall in blood pressure, often as a consequence of effects of anticholinesterase agents on the medullary vasomotor centers of the CNS. /Anticholinesterase agents/ Organophosphorus derivatives act by combining with and inactivating the enzyme acetylcholinesterase. ... The inactivation of cholinesterase by cholinesterase inhibitor pesticides allows the accumulation of large amounts of acetylcholine, with resultant widespread effects that may be ... separated into 4 categories: (1) Potentiation of postganglionic parasympathetic activity. ... (2) Persistent depolarization of skeletal muscle ... (3) Initial stimulation following depression of cells of central nervous system ... (4) Variable ganglionic stimulation or blockade ... /Cholinesterase inhibitor pesticides/ The main feature of the toxic mechanism of organophosphorus pesticides is inhibition of the esterase enzyme activity, in particular of cholinesterase, which plays an important physiological part. Organophosphorus pesticides can also indirectly interact with the biochemical receptors of acetylcholine. /Organophosphorus pesticides/ For more Mechanism of Action (Complete) data for PHENTHOATE (7 total), please visit the HSDB record page. |
| 分子式 |
C12H17O4PS2
|
|---|---|
| 分子量 |
320.36
|
| 精确质量 |
320.03
|
| CAS号 |
2597-03-7
|
| PubChem CID |
17435
|
| 外观&性状 |
Colorless to light yellow liquid
|
| 密度 |
1.3±0.1 g/cm3
|
| 沸点 |
379.5±52.0 °C at 760 mmHg
|
| 熔点 |
156ºC
|
| 闪点 |
183.3±30.7 °C
|
| 蒸汽压 |
0.0±0.9 mmHg at 25°C
|
| 折射率 |
1.564
|
| LogP |
3.96
|
| tPSA |
111.96
|
| 氢键供体(HBD)数目 |
0
|
| 氢键受体(HBA)数目 |
6
|
| 可旋转键数目(RBC) |
8
|
| 重原子数目 |
19
|
| 分子复杂度/Complexity |
324
|
| 定义原子立体中心数目 |
0
|
| SMILES |
CCOC(=O)C(C1=CC=CC=C1)SP(=S)(OC)OC
|
| InChi Key |
XAMUDJHXFNRLCY-UHFFFAOYSA-N
|
| InChi Code |
InChI=1S/C12H17O4PS2/c1-4-16-12(13)11(10-8-6-5-7-9-10)19-17(18,14-2)15-3/h5-9,11H,4H2,1-3H3
|
| 化学名 |
ethyl 2-dimethoxyphosphinothioylsulfanyl-2-phenylacetate
|
| 别名 |
Dimephenthioate; Phenthoate; Phenthoate
|
| HS Tariff Code |
2934.99.9001
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
DMSO : ~250 mg/mL (~780.37 mM)
|
|---|---|
| 溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 3.1215 mL | 15.6074 mL | 31.2149 mL | |
| 5 mM | 0.6243 mL | 3.1215 mL | 6.2430 mL | |
| 10 mM | 0.3121 mL | 1.5607 mL | 3.1215 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。