规格 | 价格 | 库存 | 数量 |
---|---|---|---|
100mg |
|
||
Other Sizes |
|
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
The waxy surface of some plant leaves and fruits can concentrate polyaromatic hydrocarbons through surface adsorption. /Polynuclear aromatic hydrocarbons/ Dietary absorption efficiencies and elimination rates of acenaphthylene, 1-phenyl naphthalene, 2-methyl anthracene, 9-methyl anthracene, triphenylene, perylene, benzo[b]fluorene, dibenzo[a,h]anthracene, benzo [ghi]perylene and coronene were examined in rainbow trout. Subadult fish were exposed to 10 mg of each chemical over 5 days and polycyclic aromatic hydrocarbon (PAH) levels were monitored during the following 25 days. The results indicated that PAHs were not accumulated by trout through dietary exposure because of the combined effects of poor absorption efficiencies and rapid elimination rates. Phenyl naphthalene was more persistent than the other PAHs examined, with a half-life of 25 days. Metabolism / Metabolites Metabolic scission of the 5-membered ring of acenaphthylene to yield 1,8-naphthalic acid proceeds via the cis- and trans-acenaphthene-1,2-diols and scission of the diols has been shown to be affected by microsomal prepn of rat liver. A Beijerinckia species and a mutant strain, Beijerinckia species strain B8/36, were shown to oxidize the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Both organisms oxidized acenaphthene to the same spectrum of metabolites, which included 1-acenaphthenol, 1-acenaphtheneone, 1,2-acenaphthenediol, acenaphthenequinone, and a compound that was tentatively identified as 1,2-dihydroxyacenaphthylene. In contrast, acenaphthylene was oxidized to acenaphthenequinone and the compound tentatively identified as 1,2-dihydroxyacenaphthylene was also formed when the organism was incubated with synthetic cis-1,2-acenaphthenediol. A metabolite identified as cis-1,2-acenaphthenediol was formed from acenaphthylene by the mutant Beijerinckia species strain B8/36. Cell extracts prepared from the wild-type Beijerinckia strain contain a constitutive pyridine nucleotide-dependent dehydrogenase which can oxidize 1-acenaphthenol and 9-fluorenol. The results indicate that although acenaphthene and acenaphthylene are both oxidized to acenaphthenequinone, the pathways leading to the formation of this end product are different. Stenotrophomonas sp. RMSK capable of degrading acenaphthylene as a sole source of carbon and energy was isolated from coal sample. Metabolites produced were analyzed and characterized by TLC, HPLC, and mass spectrometry. Identification of naphthalene-1,8-dicarboxylic acid, 1-naphthoic acid, 1,2-dihydroxynaphthalene, salicylate and detection of key enzymes namely 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase, and catechol-1,2-dioxygenase in the cell free extract suggest that acenaphthylene metabolized via 1,2-dihydroxynaphthalene, salicylate and catechol. The terminal metabolite, catechol was then metabolized by catechol-1,2-dioxygenase to cis,cis-muconic acid, ultimately forming TCA cycle intermediates. Based on these studies, the proposed metabolic pathway in strain RMSK is,acenaphthylene --> naphthalene-1,8-dicarboxylic acid --> 1-naphthoic acid --> 1,2-dihydroxynaphthalene --> salicylic acid --> catechol --> cis,cis-muconic acid. The acenaphthylene-degrading bacterium Rhizobium sp. strain CU-A1 was isolated from petroleum-contaminated soil in Thailand. This strain was able to degrade 600 mg/liter acenaphthylene completely within three days. To elucidate the pathway for degradation of acenaphthylene, strain CU-A1 was mutagenized by transposon Tn5 in order to obtain mutant strains deficient in acenaphthylene degradation. Metabolites produced from Tn5-induced mutant strains B1, B5, and A53 were purified by thin-layer chromatography and silica gel column chromatography and characterized by mass spectrometry. The results suggested that this strain cleaved the fused five-membered ring of acenaphthylene to form naphthalene-1,8-dicarboxylic acid via acenaphthenequinone. One carboxyl group of naphthalene-1,8-dicarboxylic acid was removed to form 1-naphthoic acid which was transformed into salicylic acid before metabolization to gentisic acid. For more Metabolism/Metabolites (Complete) data for ACENAPHTHYLENE (8 total), please visit the HSDB record page. PAH metabolism occurs in all tissues, usually by cytochrome P-450 and its associated enzymes. PAHs are metabolized into reactive intermediates, which include epoxide intermediates, dihydrodiols, phenols, quinones, and their various combinations. The phenols, quinones, and dihydrodiols can all be conjugated to glucuronides and sulfate esters; the quinones also form glutathione conjugates. (L10) |
---|---|
毒性/毒理 (Toxicokinetics/TK) |
Toxicity Summary
IDENTIFICATION AND USE: Acenaphthylene is a solid. It is used for research purposes. Polycyclic aromatic hydrocarbons are a group of chemicals that are formed during the incomplete burning of coal, oil, gas, wood, garbage, or other organic substances, such as tobacco and charbroiled meat. HUMAN EXPOSURE AND TOXICITY: Blood polycyclic aromatic hydrocarbon (PAH) levels in children, including acenaphthylene, significantly correlated with oxidative stress and altered antioxidant status. It induced cytokine production and reduced nitric oxide formation in human coronary artery endothelial cell cultures. Metabolic activation of PAHs and aryl- and heterocyclic amines to genotoxic products was examined in Salmonella typhimurium, and it was found that P450 2A13 and 2A6 (as well as P450 1B1) were able to activate several of these procarcinogens. Acenaphthylene is oxidized by human P450s 2A6 and 2A13 and other P450s to form several mono- and dioxygenated products. It is not classifiable as to human carcinogenicity. ANIMAL STUDIES: No tumors were observed in a lifetime study when 0.25% acenaphthylene was applied to the skin of mice. Survival was 65% at 6 months, and 35% at 1 year. Acenaphthylene is an aromatic hydrocarbon-responsive receptor (AHR)-independent inducer of murine CYP1A2 and CYP1B1 mRNA. Acenaphthylene (1 mM) yielded positive results in a Salmonella typhimurium forward mutation assay, but was not positive in a Salmonella typhimurium TA98 and TA100 with metabolic activation. ECOTOXICITY STUDIES: Acenaphthylene modified the hemolytic alternative complement activity after 4 hr of incubation in peripheral blood of the European sea bass. It was also directly cytotoxic to a cell line from the rainbow trout gill. The ability of PAH's to bind to blood proteins such as albumin allows them to be transported throughout the body. Many PAH's induce the expression of cytochrome P450 enzymes, especially CYP1A1, CYP1A2, and CYP1B1, by binding to the aryl hydrocarbon receptor or glycine N-methyltransferase protein. These enzymes metabolize PAH's into their toxic intermediates. The reactive metabolites of PAHs (epoxide intermediates, dihydrodiols, phenols, quinones, and their various combinations) covalently bind to DNA and other cellular macromolecules, initiating mutagenesis and carcinogenesis. (L10, L23, A27, A32) Toxicity Data LD50: 1700 mg/kg (Intraperitoneal, Rat) (L909) LD50: 1760 mg/kg (Oral, Mouse) (L909) Interactions ... Coumarin 7-hydroxylation, catalyzed by P450 2A13, was strongly inhibited by 2'-methoxy-5,7-dihydroxyflavone, 2-ethynylnaphthalene, 2'-methoxyflavone, 2-naphththalene propargyl ether, acenaphthene, acenaphthylene, naphthalene, 1-acetylpyrene, flavanone, chrysin, 3-ethynylphenanthrene, flavone, and 7-hydroxyflavone; these chemicals induced Type I spectral changes with low Ks values. ... Non-Human Toxicity Values LD50 Rat i.p. 1700 mg/kg |
参考文献 |
|
其他信息 |
Acenaphthylene is a colorless crystalline solid. Insoluble in water. Used in dye synthesis, insecticides, fungicides, and in the manufacture of plastics.
Acenaphthylene is a ortho- and peri-fused tricyclic hydrocarbon that occurs in coal tar. It is an ortho- and peri-fused polycyclic arene, a member of acenaphthylenes and an ortho- and peri-fused tricyclic hydrocarbon. Acenaphthylene has been reported in Arctostaphylos uva-ursi, Tuber borchii, and Artemisia capillaris with data available. Acenaphthylene is one of over 100 different polycyclic aromatic hydrocarbons (PAHs). PAHs are chemicals that are formed during the incomplete burning organic substances, such as fossil fuels. They are usually found as a mixture containing two or more of these compounds. (L10) |
分子式 |
C12H8
|
---|---|
分子量 |
152.20
|
精确质量 |
152.062
|
CAS号 |
208-96-8
|
相关CAS号 |
Acenaphthylene-d8; 93951-97-4
|
PubChem CID |
9161
|
外观&性状 |
Light yellow to yellow solid
|
密度 |
1.2±0.1 g/cm3
|
沸点 |
298.9±7.0 °C at 760 mmHg
|
熔点 |
78-82 °C(lit.)
|
闪点 |
137.2±8.9 °C
|
蒸汽压 |
0.0±0.3 mmHg at 25°C
|
折射率 |
1.732
|
LogP |
4.26
|
tPSA |
0
|
氢键供体(HBD)数目 |
0
|
氢键受体(HBA)数目 |
0
|
可旋转键数目(RBC) |
0
|
重原子数目 |
12
|
分子复杂度/Complexity |
184
|
定义原子立体中心数目 |
0
|
SMILES |
C12=C3C([H])=C([H])C([H])=C1C([H])=C([H])C2=C([H])C([H])=C3[H]
|
InChi Key |
HXGDTGSAIMULJN-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C12H8/c1-3-9-4-2-6-11-8-7-10(5-1)12(9)11/h1-8H
|
化学名 |
acenaphthylene
|
别名 |
Acenaphthylene
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO: ≥ 250 mg/mL (1642.58 mM)
|
---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 6.5703 mL | 32.8515 mL | 65.7030 mL | |
5 mM | 1.3141 mL | 6.5703 mL | 13.1406 mL | |
10 mM | 0.6570 mL | 3.2852 mL | 6.5703 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。