6PPD-Q (6PPD-Quinone)

别名: 6PPD-quinone; 2754428-18-5; 6PPD-Q; 2-((4-Methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione; 2,5-Cyclohexadiene-1,4-dione, 2-[(1,3-dimethylbutyl)amino]-5-(phenylamino)-; 6PPD quinone; 6PPD-Quinone; 2-((4-Methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione; 6PPD-quinone; 6PPD-Quinone; 2-[(1,3-Dimethylbutyl)amino]-5-(phenylamino)-2,5-cyclohexadiene-1,4-dione (ACI); 2,5-Cyclohexadiene-1,4-dione, 2-[(1,3-dimethylbutyl)amino]-5-(phenylamino)- (ACI); G8MFB8G7B6; 2-​[(1,​3-​二甲基丁基)​氨基]​-​5-​(苯氨基)-2,​5-​环己二烯-​1,​4-​二酮
目录号: V81904 纯度: =98.17%
6PPD-Q(6PPD-醌)是人类尿液中发现的一种内源性代谢物,在环境中普遍存在。
6PPD-Q (6PPD-Quinone) CAS号: 2754428-18-5
产品类别: Endogenous Metabolite
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
1mg
5mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: =98.17%

产品描述
6PPD-Q(6PPD-醌)是人类尿液中发现的一种内源性代谢物,在环境中普遍存在。
生物活性&实验参考方法
靶点
Endogenous metabolite
体外研究 (In Vitro)
N-(1,3-二甲基丁基)-N′-苯基对苯二胺(6PPD)及其醌衍生物6PPD-醌(6PPD-Q)已被发现在环境中普遍存在,但目前还没有关于它们在人体中存在的数据。在这里,我们通过测量从中国南方三个不同人群(普通成年人、儿童和孕妇)收集的150份尿液样本,对6PPD和6PPD-Q进行了首次人体生物监测研究。尿液样本中均检测到6PPD和6PPD-Q,检测频率在60%至100%之间。尿6PPD-Q浓度显著高于6PPD,与6PPD浓度相关性良好(p<0.01),表明人类同时暴露于6PPD和6PPD-Q。体外代谢实验表明,人肝微粒体可以快速消耗6PPD,这应该是人尿液中6PPD浓度较低的原因。此外,孕妇的6PPD和6PPD-Q浓度明显高于成人(0.018和0.40 ng/mL)和儿童(0.015和0.076 ng/mL,中位数分别为0.068和2.91 ng/mL。孕妇每日尿中6PPD-Q的高排泄量估计为273(ng/kg bw)/天。考虑到6PPD-Q对多种水生生物是致命的毒物,其长期暴露对人类健康构成的潜在风险需要紧急关注[1]。
体内研究 (In Vivo)
尿中6PPD和6PPD-Q的每日排泄量[1]
根据在三个人群中测量的尿液分析物浓度,使用其他地方描述的模型(49−51)估算了6PPD和6PPD-Q在尿液中的每日排泄量,即6PPD的每日排泄率((ng/kg bw)/天)=尿液分析物的浓度(ng/mL)×每日尿液排泄量(mL/天)/体重(kg)。在我们的估计中,尿液每日排泄量的值来自参考文献(50和51):成人1700 mL/天,儿童660 mL/天和孕妇2000 mL/天。体重值基于我们问卷中获得的平均体重:成人60公斤,儿童23公斤,孕妇64公斤(表S2)。分别使用6PPD和6PPD-Q的中位和第95位浓度来计算中位和高日排泄量。如图2所示,正如预期的那样,成人、儿童和孕妇尿液中6PPD-Q的每日排泄量(中位数分别为11.3、2.18、90.9(ng/kg bw)/天)明显高于其母体6PPD(中位数分别分别为0.51、0.43和2.13(ng/kg体重)/天。此外,孕妇的6PPD和6PPD-Q日排泄量高于成人和儿童,孕妇尿液中6PPD-Q的日排泄量高达247(ng/kg bw)/天
应该指出的是,由于收集24小时尿液样本的困难,对每日排泄量的估计受到对早晨现场尿液样本的依赖的限制,因为尿液中6PPD和6PPD-Q水平可能存在每日差异。因此,尽管许多先前的研究表明,清晨尿液是估计个人暴露的24小时收集的可行替代方案,但这些结果应被视为初步估计。尽管存在局限性,但这些人群中6PPD和6PPD-Q的每日尿排泄量应该引起关注,因为它在很大程度上反映了他们的内部暴露剂量。考虑到部分6PPD和6PPD-Q也可能像其他污染物一样通过粪便和呼出空气排出,6PPD的实际暴露剂量甚至可能高于我们的估计。尽管该剂量不太可能超过为6PPD计算的26000(ng/kg bw)/天的拟议参考剂量(RfD),(56)但长期接触6PPD-Q造成的潜在健康风险需要引起相当大的关注,因为从单个物种到组织水平,6PPD-Q已被证明对水生生物的毒性比6PPD更大。在未来的研究中,需要对6PPD和6PPD-Q进行额外的生物监测调查,以更好地阐明它们在人体中的内部暴露。还建议对6PPD和6PPD-Q进行更多的毒理学和流行病学研究,以揭示其潜在的健康风险。
参考文献

[1]. First report on the occurrence of N-(1, 3-dimethylbutyl)-N’-phenyl-p-phenylenediamine (6PPD) and 6PPD-quinone as pervasive pollutants in human urine from south China. Environ Sci Technol Lett, 2022, 9(12): 1056-1062.

其他信息
p-Phenylenediamine (PPD) compounds are an important class of synthetic antioxidants that have been massively used as additives for the manufacture of various rubber products, such as tires, footwear, and even food contact materials. Among the PPD compounds, N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) is one of the most frequently used species, which has been listed as a high production volume (HPV) chemical. In 2001, the global production of 6PPD was estimated to be 130000 tons. In 2020, its annual production in China alone reached as high as 200000 tons, which accounted for nearly 54% of the production of all rubbery antioxidants. With such a high yield, unfortunately, a recent study by Tian et al. suggested that 6PPD may be not safe. They discovered that 6PPD can be oxidized in the environment to form a toxic quinone derivative, called 6PPD-quinone (6PPD-Q), which was responsible for acute mortality of coho salmon (Oncorhynchus kisutch) in the Pacific Northwest. (6) Because of the ubiquitous use of 6PPD, this discovery has now triggered widespread scientific concern over the environmental contamination and toxic effects of 6PPD and its quinone derivative, 6PPD-Q.[1]
More recently, 6PPD and 6PPD-Q have been found in a variety of environmental matrices, including atmospheric particles, indoor dust, (5,11,12) road dust, playground dust, roadside soil, runoff water, and surface water. (16−18) In most cases, 6PPD and 6PPD-Q coexisted in these environmental matrices at comparable concentrations. For instance, Zhang et al. demonstrated ubiquitous distributions of 6PPD and 6PPD-Q in fine particulate matters (PM2.5) from six Chinese cities, and the atmospheric concentrations of 6PPD (median 0.9–8.4 pg/m3) were found to be similar to those of 6PPD-Q (median 1.7–6.7 pg/m3). Hiki et al. reported the coexistence of 6PPD and 6PPD-Q in road dust from Tokyo, Japan, and comparable concentrations of 6PPD (45–1175 ng/g) and 6PPD-Q (116–1238 ng/g) were also observed in the dust samples.[1]
Aside from environmental ubiquity, emerging evidence also suggested some significant toxicities of 6PPD and 6PPD-Q. (6,19−24) For example, 6PPD has been shown to induce toxicity in fathead minnow (Pimephales promelas) and freshwater mussel (Lampsilis siliquoidea). In addition to being highly toxic to coho salmon as reported by Tian et al., (6,21) 6PPD-Q was also demonstrated to be toxic to zebrafish larvae with a 24 h LC50 of 308.67 μg/L. More recently, 6PPD and 6PPD-Q were found to cause anxiety-like behaviors and unbalance in zebrafish. Although the aquatic toxicities of 6PPD and 6PPD-Q are becoming clearer, their adverse effects on mammals and humans remain largely unknown. In particular, internal exposure to 6PPD and 6PPD-Q may pose potential health risks to humans. However, despite the newfound ubiquity of 6PPD and 6PPD-Q in the environment, their occurrences, concentrations, and exposure status in humans are still unclear.[1]
To fill the knowledge gap, we conducted the first human biomonitoring study of 6PPD and 6PPD-Q by measuring urine samples, considering that urine plays an important role in the excretion of environmental pollutants and is also relatively easy to collect, store, and prepare. A total of 150 human urine samples were collected from three different populations (general adults, children, and pregnant women) in South China and analyzed for 6PPD and 6PPD-Q. The main objectives were to (1) determine the occurrences of 6PPD and 6PPD-Q in human urine, (2) compare the internal levels of 6PPD and 6PPD-Q in different populations from South China, and (3) provide baseline information on internal exposure of 6PPD and 6PPD-Q in humans. The results of this study will greatly improve our understanding of human exposure to 6PPD and 6PPD-Q.[1]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C18H22N2O2
分子量
298.38
精确质量
298.168
CAS号
2754428-18-5
PubChem CID
154926030
外观&性状
Pink to red solid powder
LogP
4.1
tPSA
58.2
氢键供体(HBD)数目
2
氢键受体(HBA)数目
4
可旋转键数目(RBC)
6
重原子数目
22
分子复杂度/Complexity
485
定义原子立体中心数目
0
SMILES
C1(NC(CC(C)C)C)C(C=C(C(C=1)=O)NC1C=CC=CC=1)=O
InChi Key
UBMGKRIXKUIXFQ-UHFFFAOYSA-N
InChi Code
InChI=1S/C18H22N2O2/c1-12(2)9-13(3)19-15-10-18(22)16(11-17(15)21)20-14-7-5-4-6-8-14/h4-8,10-13,19-20H,9H2,1-3H3
化学名
2-anilino-5-(4-methylpentan-2-ylamino)cyclohexa-2,5-diene-1,4-dione
别名
6PPD-quinone; 2754428-18-5; 6PPD-Q; 2-((4-Methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione; 2,5-Cyclohexadiene-1,4-dione, 2-[(1,3-dimethylbutyl)amino]-5-(phenylamino)-; 6PPD quinone; 6PPD-Quinone; 2-((4-Methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione; 6PPD-quinone; 6PPD-Quinone; 2-[(1,3-Dimethylbutyl)amino]-5-(phenylamino)-2,5-cyclohexadiene-1,4-dione (ACI); 2,5-Cyclohexadiene-1,4-dione, 2-[(1,3-dimethylbutyl)amino]-5-(phenylamino)- (ACI); G8MFB8G7B6;
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 3.3514 mL 16.7572 mL 33.5143 mL
5 mM 0.6703 mL 3.3514 mL 6.7029 mL
10 mM 0.3351 mL 1.6757 mL 3.3514 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们