| 规格 | 价格 | ||
|---|---|---|---|
| 500mg | |||
| 1g | |||
| Other Sizes |
| 药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
Absorption of sodium in the small intestine plays an important role in the absorption of chloride, amino acids, glucose, and water. Chloride, in the form of hydrochloric acid (HCl), is also an important component of gastric juice, which aids the digestion and absorption of many nutrients. Substantially excreted by the kidneys. The volume of distribution is 0.64 L/kg. The primary route of sodium excretion is the urine; additional excretion occurs in sweat and feces. The kidney filters sodium a the glomerulus, but 60% to 70% is reabsorbed in the proximal tubules along with bicarbonate and water. Another 25% to 30% is reabsorbed in the loop of Henle, along with chloride and water. In the distal tubules, aldosterone modulates the reabsorption of sodium and, indirectly, chloride. The renal threshold for sodium is 110 to 130 mEq/L. Less than 1% of the filtered sodium is excreted in the urine. Sodium is rapidly absorbed from the GI tract; it is also absorbed from rectal enemas. Intestinal wall absorption occurs via the Na+, K+-adenosine triphosphatase system that is augmented by aldosterone and desoxycorticosterone acetate. Sodium is not bound by plasma proteins. The volume of distribution is 0.64 L/kg. In one study using radiolabeled 20% sodium chloride injection, most of the drug concentrated in the decidua and the fetal part of the placenta following intra-amniotic injection. Following intra-amniotic administration of 20% sodium chloride injection, some of the drug diffuses into the maternal blood. Atrichial sweat glands ... are the organs by which considerable body water and electrolytes, mainly sodium chloride, are lost. For more Absorption, Distribution and Excretion (Complete) data for SODIUM CHLORIDE (6 total), please visit the HSDB record page. Metabolism / Metabolites The salt that is taken in to gastro intestinal tract remains for the most part unabsorbed as the liquid contents pass through the stomach and small bowel. On reaching the colon this salt, together with the water is taken in to the blood. As excesses are absorbed the kidney is constantly excreting sodium chloride, so that the chloride level in the blood and tissues remains fairly constant.Further more, if the chloride intake ceases, the kidney ceases to excrete chlorides. Body maintains an equilibrium retaining the 300gm of salt dissolved in the blood and fluid elements of the tissue dissociated into sodium ions and chloride ions. Biological Half-Life 17 minutes |
|---|---|
| 毒性/毒理 (Toxicokinetics/TK) |
Protein Binding
Sodium is not bound by plasma proteins. |
| 其他信息 |
Sodium chloride is an inorganic chloride salt having sodium(1+) as the counterion. It has a role as an emetic and a flame retardant. It is an inorganic chloride and an inorganic sodium salt.
Sodium chloride, also known as salt, common salt, table salt or halite, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. Sodium chloride is the primary salt in seawater and in the extracellular fluid of many multicellular organisms. It is listed on the World Health Organization Model List of Essential Medicines. Sodium Chloride is a metal halide composed of sodium and chloride with sodium and chloride replacement capabilities. When depleted in the body, sodium must be replaced in order to maintain intracellular osmolarity, nerve conduction, muscle contraction and normal renal function. Salt is an ionic compound that results from the neutralization of an acid and a base. Sodium chloride or table salt is a mineral substance belonging to the larger class of compounds called ionic salts. Salt in its natural form is known as rock salt or halite. Salt is present in vast quantities in the ocean, which has about 35 grams of sodium chloride per litre, corresponding to a salinity of 3.5%. Salt is essential for animal life, and saltiness is one of the basic human tastes. The tissues of animals contain larger quantities of salt than do plant tissues. Salt is one of the oldest and most ubiquitous of food seasonings, and salting is an important method of food preservation. Salt is produced from salt mines or by the evaporation of seawater or mineral-rich spring water in shallow pools. Salt is used in many industrial processes and in the manufacture of polyvinyl chloride, plastics, paper pulp and many other consumer products. Of the global annual production of around 200,000,000 tonnes of salt, only 6% is used for human consumption. Other uses include water conditioning, highway de-icing and various agricultural applications. For humans, salt is a major source of sodium. Sodium is essential to life: it helps nerves and muscles to function correctly, and it is one of the factors involved in the regulation of water content. A ubiquitous sodium salt that is commonly used to season food. See also: Dextrose; potassium chloride; sodium chloride (component of); Chloride Ion (has active moiety); Sodium Cation (has active moiety) ... View More ... Drug Indication This intravenous solution is indicated for use in adults and pediatric patients as a source of electrolytes and water for hydration. Also, designed for use as a diluent and delivery system for intermittent intravenous administration of compatible drug additives. Mechanism of Action Sodium and chloride — major electrolytes of the fluid compartment outside of cells (i.e., extracellular) — work together to control extracellular volume and blood pressure. Disturbances in sodium concentrations in the extracellular fluid are associated with disorders of water balance. Intra-amniotic instillation of 20% sodium chloride injection induces abortion and fetal death. Although the mechanism has not been conclusively determined, some studies indicate that the drug's abortifacient activity may be mediated by prostaglandins released from decidual cells damaged by hypertonic solutions of sodium chloride. Hypertonic sodium chloride-induced uterine contractions are usually sufficient to cause evacuation of both the fetus and placenta; however, abortion may be incomplete in 25-40% of patients. /20% injection/ |
| 分子式 |
CLNA
|
|---|---|
| 分子量 |
58.44
|
| 精确质量 |
57.958
|
| CAS号 |
7647-14-5
|
| 相关CAS号 |
14784-90-8 ((24)hydrochlorideCl);17112-21-9 ((22)hydrochlorideCl)
|
| PubChem CID |
5234
|
| 外观&性状 |
Colorless, transparent crystals or white, crystalline powder
Colorless and transparent or translucent when in large crystals Colorless cubic crystals |
| 密度 |
2.165
|
| 沸点 |
1461 ºC
|
| 熔点 |
801 °C(lit.)
|
| 闪点 |
1413°C
|
| 蒸汽压 |
1 mm Hg ( 865 °C)
|
| 折射率 |
n20/D 1.378
|
| 氢键供体(HBD)数目 |
0
|
| 氢键受体(HBA)数目 |
1
|
| 可旋转键数目(RBC) |
0
|
| 重原子数目 |
2
|
| 分子复杂度/Complexity |
2
|
| 定义原子立体中心数目 |
0
|
| HS Tariff Code |
2934.99.9001
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
Typically soluble in DMSO (e.g. 10 mM)
|
|---|---|
| 溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 17.1116 mL | 85.5578 mL | 171.1157 mL | |
| 5 mM | 3.4223 mL | 17.1116 mL | 34.2231 mL | |
| 10 mM | 1.7112 mL | 8.5558 mL | 17.1116 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。