| 规格 | 价格 | ||
|---|---|---|---|
| 500mg | |||
| 1g | |||
| Other Sizes |
| 靶点 |
TLR4
|
|---|---|
| 体外研究 (In Vitro) |
微环境启动MSCs导致产生独特的外泌体mRNA含量[4]
当检测未引物MSCs和CRX-527引物MSCs之间的外泌体mrna类型时,1915个蛋白质编码基因在CRX-527处理后表现出差异表达(FDR < 5%, >是标准化读取计数的2倍变化)。在CRX-527诱导的上调外泌体mrna中,“炎症反应”基因本体(GO)项(GO:0002544)显著富集(图2;调整p值= 3.8E−4)。除了炎症反应GO项外,外泌体mrna的上调还增强了多种生物学功能,如成纤维细胞迁移的正调节(GO:0010763;调整p值= 6.2 2e−12),内在凋亡信号通路的调节(GO:2001242;调整后的p值= 1.4E−7),纤溶酶原活化(GO:0031639;调整p值= 8.9E−7)。这些结果表明,CRX-527的启动改变了MSCs外泌体mrna的含量,表明体外微环境刺激在调节炎症和伤口愈合中的作用[4]。 为了确定外泌体mRNA含量的变化是对特定微环境刺激的特异性还是对MSC启动的一般反应,我们比较了两种不同的MSCs启动方法:TNF-α和CRX-527对外泌体mRNA含量变化重叠程度的影响。我们观察到两种MSC启动方法之间差异表达的外泌体mrna存在适度重叠(图3)。例如,在响应CRX-527启动的180个外泌体mrna中,只有11个(6.1%)响应TNF-α启动而上调。至于下调的基因,受CRX-527启动的MSCs影响的1735个外泌体mrna中有857个(49.4%)与受TNF-α启动的MSCs影响的外泌体重叠。此外,与每种MSC启动方法相关的mRNA含量变化被发现富集在不同的生物学功能中(图3)。例如,血管内皮细胞迁移和成纤维细胞迁移项的正调节特异性富集在CRX-527启动的MSC-exosomes上调mRNA中,而不富集在TNF-α启动的MSC-exosomes上调mRNA中。这一观察结果表明,外泌体mRNA含量受MSCs特定微环境的控制,在TNF-α和TLR4启动后存在差异。 MSCs的微环境启动导致外泌体microRNA含量的调节[4] 最近的证据表明,外泌体的microRNA装载是一个选择性和受调节的过程,而不是随机发生的。我们试图确定MSC微环境启动的类型是否影响外泌体的microRNA含量。为了实现这一目标,我们进行了小RNA测序,以分析来自天然MSCs、CRX-527引物MSCs和TNF-α引物MSCs的外泌体中的短RNA片段。我们分别鉴定了31个响应CRX-527治疗的差异表达外泌体microrna(图4A)和23个响应TNF-α治疗的差异表达外泌体microrna(图4B)。值得注意的是,在CRX-527和TNF-α处理之间,没有差异表达的外泌体microRNA重叠,这表明外泌体microRNA含量受到用于启动MSCs的特定微环境刺激的影响。根据TNF-α引物的msc -外泌体microRNA靶点的富集p值,“巨噬细胞分化”是富集程度最高的基因本体(GO)术语(图4D)。TNF-α是一种促炎细胞因子,已知可诱导巨噬细胞的m1样极化。丰富“巨噬细胞分化”GO术语表明,作为分子货物,外泌体可能在促炎刺激(如TNF-α扰动)下运输特定的microrna,启动单核细胞分化为巨噬细胞。图4C和D分别显示了CRX-527和TNF-α启动的最显著p值,显示了前3个富集的氧化石墨烯项。 亲本细胞与外泌体之间RNA丰度的相关性[4] 我们进一步对MSCs进行了mRNA和小RNA测序,以研究亲代MSCs与其外泌体之间的RNA丰度是否相关。我们观察到外泌体与其亲本细胞在天然条件下的适度相关性,microrna和mrna的Spearman 's Rank相关系数分别为0.46和0.57(图5)。这表明,一部分外泌体RNA(但不是全部)确实再现了它们亲本间质干细胞的RNA丰度。当MSCs暴露于微环境刺激(如CRX-527和TNF-α启动)时,这些相关性增加,尤其是microRNA(图5)。外泌体和亲本MSC microRNA丰度之间的Spearman等级相关系数(Rho)分别从0.46(在天然条件下)增加到0.78和0.76,CRX-527和TNF-α启动的MSCs。这些数据表明,MSCs的微环境刺激使MSCs的microRNA谱与其分泌的外泌体同步。mrna也出现了类似的趋势,尽管不那么明显(图5)。因此,msc -外泌体rna不仅仅是来自亲本细胞的随机rna子集,而是受驱动外泌体生成的微环境刺激的调控和依赖。 |
| 体内研究 (In Vivo) |
Morroniside(Mor)是山茱萸中的一种生物活性化合物,具有抗炎、神经保护和抗氧化特性。长期使用麻醉剂七氟烷(Sev)与术后认知功能障碍(POCD)的发展有关。本研究旨在阐明Mor改善认知障碍的作用机制。在老年小鼠中建立了Sev诱导的认知功能障碍模型,并使用水迷宫实验进行了行为分析。通过苏木精和伊红(HE)染色、尼氏染色和TUNEL染色观察小鼠海马的组织病理学变化和神经元凋亡。ELISA和qRT-PCR检测炎症因子水平。通过免疫荧光、流式细胞术和qRT-PCR评估海马组织中小胶质细胞的表型转化。使用分子对接分析Mor和TLR4之间的相互作用。Western blot鉴定了凋亡相关蛋白、突触相关蛋白和TLR4/NF-κB通路蛋白的水平。吸入Sev可显著降低老年小鼠的学习和空间记忆能力,Mor可剂量依赖性地改善这一现象。Mor抑制神经炎症,调节海马小胶质细胞的极化状态,促进其极化为M2型,减轻Sev诱导的海马组织损伤和神经元凋亡。值得注意的是,Mor可以很好地与TLR4结合,并减少TLR4的阳性表达。Mor阻断了Sev诱导的海马组织TLR4/NF-κB通路激活,TLR4激动剂CRX-527减弱了Mor的作用。总之,Mor阻断了TLR4/NF-κB通路,减少了Sev引起的海马组织损伤和神经炎症,从而改善了老年小鼠的认知障碍[1]。
近年来,toll样受体(Toll-like receptor, TLRs)在辐射损伤中的研究得到了广泛的研究,但大多数TLR配体的高毒性和低疗效的固有缺陷限制了其进一步的临床转化。CRX-527作为TLR4的一种配体,对辐射的保护作用很少有报道。实验证明,在相同剂量下,CRX-527在体内比LPS更安全,在体外几乎没有毒性作用。给药CRX-527可使野生型小鼠全身照射(TBI)的存活率提高到100%,而TLR4-/-小鼠则无此作用。TBI后,crx -527治疗小鼠造血系统损伤明显减轻,恢复期加快。此外,CRX-527诱导hsc分化,刺激CRX-527可显著增加LSK细胞的比例和数量,促进其向巨噬细胞分化,激活免疫防御。此外,我们提出造血分化在保护肠道免受辐射损伤中的免疫防御作用,并证实巨噬细胞通过外周血侵入肠道,保护肠道免受辐射损伤。同时,CRX-527维持肠道功能和稳态,促进肠道干细胞再生,保护肠道免受致死剂量辐照损伤。此外,在小鼠使用后,我们发现CRX-527对辐照后的TLR4-/-小鼠的造血系统和肠道系统没有明显的保护作用。综上所述,CRX-527诱导造血干细胞分化,保护肠上皮免受辐射损伤 TLR4在VD小鼠中介导NTP抗炎作用[3] 鉴于NTP的神经保护作用可能至少部分由TLR4介导,我们假设TLR4拮抗剂在抑制炎症和改善记忆方面可能具有与NTP相似的作用,而TLR4激动剂可能逆转NTP的保护作用。为了进一步阐明NTP的抗炎作用是否至少部分由TLR4介导,我们使用了TLR4特异性拮抗剂TAK242和特异性激动剂CRX-527。将小鼠随机分为假手术组、BCAS/生理盐水(NS)组、BCAS/NTP组、BCAS/TAK242组和BCAS/NTP/CRX-527组,每组12只。[3] 我们发现,NTP或TAK-242治疗后,IL-1β、IL -6和TNFα mRNA水平降低。然而,NTP与CRX-527联合使用导致这些mRNA水平升高(IL-1β: P<0.001;il - 6: P < 0.001;TNFα: P<0.001,与BCAS/NTP组相比)(图7A,B和7C)。同样,给药后MyD88和pP65蛋白水平显著升高(MyD88: P<0.001;pP65: P<0.001,与BCAS/NTP组相比)(图7E和F),提示NTP在VD小鼠中至少部分通过TLR4/MyD88/NF-κB途径发挥其抗炎作用。[3] 接下来,我们观察了这两种抑制剂对神经胶质细胞的影响。BCAS/NTP/CRX-527组海马CA1区和CA3区IBA-1阳性细胞多于BCAS/NTP组(CA1: P<0.001;CA3: P = 0.004)(图6A和B)。此外,GFAP荧光染色显示,与BCAS/NTP/CRX-527组相比,BCAS/NTP组CA1和CA3区阳性细胞数量显著增加(CA1: P = 0.0037;CA3: P<0.001)(图6C和D)。 为了评估BCAS/NTP组小鼠记忆功能的改善是否与TLR4相关,小鼠在治疗后进行y迷宫测试。与假手术组相比,BCAS/NS组Y-maze自发交替率显著降低(F(4,47) = 27.15,P = 0.000)。与BCAS/NS组相比,NTP和TAK242治疗的正确率显著增加。然而,与BCAS/NTP组相比,CRX-527明显消除了NTP对BCAS小鼠%正确交替的治疗作用(P<0.001)。此外,BCAS/NTP和BCAS/TAK242组之间没有差异(P>0.5)(图8),这表明TLR4的过度激活逆转了NTP对记忆损伤的影响,并且TLR4进一步介导了NTP对VD小鼠记忆的改善。 |
| 细胞实验 |
共培养试验[2]
简单地说,1×105 RAW264.7或THP-1细胞在Transwell室(BIOFIL, 0.4µm, 6.5 mm直径)中接种,MODE-K或hiec细胞在12孔板底部接种,然后根据制造商的说明进行培养。RAW264.7细胞或Transwell室THP-1细胞在辐照前12小时用CRX-527处理。照射后,使用12孔板上的MODE-K细胞或hiec进行菌落形成、ROS和Western blot分析。 损伤韧带的处理包括:(1)PBS(作为损伤对照),(2)5 × 106外泌体(exosome), (3) TNF-α-引物MSCs (TNF)的5 × 106外泌体,或(4)CRX-527-引物MSCs (CRX)的5 × 106外泌体。外泌体剂量的选择基于先前的结果,结果显示1 × 106外泌体的递送降低了M1/M2巨噬细胞比例,但没有改善肌腱功能。5 × 106外泌体的剂量是撕裂MCL中可以添加的最大剂量和体积,而不会出现过多的渗漏。给药后缝合皮肤。在损伤后3天(当巨噬细胞的存在升高时),通过针和注射器将第二剂量的5 × 106外泌体施用于对侧MCL,以检查额外剂量的外泌体是否可以提供对愈合的附加效应。伤后14天,收集mcl进行力学测试。由于没有观察到力学结果中的依赖效应,因此将两方合并进行所有数据分析。[4] |
| 动物实验 |
Male SPF-grade C57BL/6J mice (20 months old) were kept in a clean-grade animal house. room temperature was 23 °C–28 °C, with humidity levels between 45% and 55%, under a 12-h light–dark cycle, and feeding anddrinking were performed autonomously. Animal experiments followed the 3R principle,changing bedding daily and disinfect-ing facilities, such as food containers, cages, water bottles, anddrinking tubes regularly. After a week of adjustment feeding,mice were randomly divided into control (n=8), Sev (Sev,n=8), Sev-Mor (S-Mor,n=16), and Sev-Mor-TLR4 agonist(S-Mor-CRX-527,n=4) groups. An anesthesia gas monitor was used to monitorthe levels of Sev, carbon dioxide, and oxygen levels. A smallamount of soda lime was spread on the bottom of the inductionbox to prevent carbon dioxide accumulation. Breathable isola-tion pads were laid flat on top of the soda-lime to prevent micefrom inhaling soda-lime dust to burn the mice. A mouse modelof cognitive dysfunction under Sev anesthesia was established according to.
Mice continuously inhaled 2%Sev for 5h, with a total of 1.5L/min airflow achieved using 70% O2 as the carrier gas. After the end of Sev anesthesia, they were returnedto their cages after awakening in a dry and warm environment.Control group: normal inhalation of room air.Control mice were intraperitoneally injected with saline(0.1 mL/100 g). After anesthetization, mice in the Sev groupwere intraperitoneally injected with saline. The mice in theS-Mor group were anesthetized before receiving Mor (30, 60,and 100 mg/kg body weight)at a frequency of every three days over a period of four weeks. Mice in the S-Mor-CRX-527 groupwere anesthetized and injected intraperitoneally with Mor(100 mg/kg bw) every three days for four consecutive weeks,followed by intraperitoneal injection of CRX-527 (0.25 mg/kgbw, V42156, InvivoChem LLC) once a day forthree days during the last three days of Mor treatment. [1] Irradiation and treatment [2] HIECs and MODE-K cells were irradiated with a single dose of 16 Gy X-ray using an irradiator (KUBTEC XCELL 225, 225 KV 13.2 mA 1 Gy/min), while unirradiated control cells were studied in parallel under the same conditions. For mice, 5 Gy total body dose was used to observe the changes of hematopoietic system, 7.5 Gy total body dose was used to observe the changes of intestinal system, and 9 Gy local abdominal irradiation was used to observe the changes of intestinal system. Mice received 0.5 mg/kg CRX-527 by intraperitoneal injection 24 hours and 2 hours before irradiation. Whole body irradiation mice were fixed with a fixed frame and then placed in an irradiator for irradiation. After irradiation, the corresponding tissues were collected for detection. Establishment of VD mice model and drug treatment [3] We established the VD mice model using a bilateral common carotid artery model (BCAS) (Shibata et al., 2004; Shibata et al., 2007; Ihara et al., 2014). After two weeks of adaptation, all mice were randomly divided into five groups: the sham group, the BCAS/normal saline (NS) group, the BCAS/NTP group, the BCAS/TAK242 group and the BCAS/NTP/CRX-527 group (n = 12, each group). Specifically, the mice were anesthetized with 3.0% isoflurane and placed in the supine position. To expose both common carotid arteries, a small incision was made in the midline of the neck. Microcoils of 0.18 (0.18 mm diameter, 2.5 mm length) were placed in both common carotid arteries. Put on one side of the microcoil first, and left the other side about an hour later. The intraoperative and postoperative temperature was kept on a heating pad at 36.5 ± 0.5 °C. When the mice recovered from the anesthesia, they were free to move around the cage and access to water and food. Three days after surgery, both the BCAS/NS group and the BCAS/NTP group were given saline and NTP (50NU/Kg, once per day) for 28 days (Fang et al., 2019), respectively. To observe the effects of NTP on TLR4, intraperitoneal injection of 3 mg/kg TAK-242 or 0.25 mg/kg CRX-527 (tlrl-crx527) was performed according to previous studies and manufacturer instructions (Hua et al., 2015; Yang et al., 2020; Zhang et al., 2022). |
| 参考文献 |
[1]. Morroniside ameliorates sevoflurane anesthesia-induced cognitive dysfunction in aged mice through modulating the TLR4/NF-κB pathway. Biomol Biomed. 2024 Dec 6. doi: 10.17305/bb.2024.11433.
[2]. CRX-527 induced differentiation of HSCs protecting the intestinal epithelium from radiation damage. Front Immunol. 2022 Aug 30:13:927213. [3]. Neurotropin alleviates cognitive impairment by inhibiting TLR4/MyD88/NF-κB inflammation signaling pathway in mice with vascular dementia. Neurochem Int. 2023 Dec:171:105625. [4]. Modulating the mesenchymal stromal cell microenvironment alters exosome RNA content and ligament healing capacity. Stem Cells. 2024 Jul 8;42(7):636-649. |
| 其他信息 |
In summary, our research demonstrates for the first time thatMor mitigates Sev-induced histopathological damage in thehippocampus of elderly mice, promotes the transformation ofmicroglia into the M2 type, and suppresses neuroinflamma-tion. Importantly, Mor blocked the TLR4/NF-κB pathway, sug-gesting that it may alleviate cognitive deficits in aged mice bymodulatingtheTLR4/NF-κBpathway.Thisstudyelucidatesthepotential mechanism of action of Mor in alleviating cognitiveimpairment in aged mice, which provides a new reference forthe clinical treatment of POCD. However, there are still someshortcomings of this research. Owing to time and conditionconstraints, this study had a small sample size. The effect ofMoroncognitiveimpairmentinyoungmiceanditsmechanismof action should be explored further in the future. [1]
In this study, we demonstrated that CRX-527 protected against irradiation-induced hematopoietic and intestinal injury. Compared with LPS, CRX-527 was less toxic in vivo and in vitro. Mechanistically, the stimulation of CRX-527 significantly increased the proportion and number of HSCs and promoted their differentiation into macrophages, activating immune defense. On this basis, we observed positive changes in intestinal structure and function in mice after ionizing radiation. Activation of the TLR4-related pathway mediated the protective effect of CRX-527 on hematopoietic and intestinal radiation injury. [2] In our study, TAK242 inhibited neuroinflammation induced by BCAS, similar to the effects of NTP. Finally, we administered the TLR4-specific agonist CRX-527 to elucidate the underlying mechanisms of NTP effects. CRX-527, a TLR4-specific agonist, induced significant NF-κB promoter activation at 24 h after stimulation (Bowen et al., 2012). CRX-527 induces activation of downstream MyD88 signaling cascades leading to early activation and nuclear translocation of the NF-κB, promoting inflammation (Zhang et al., 2022). We found that CRX-527 abolished the effect of NTP, worsened neuroinflammation, and increased memory impairment, suggesting that TLR4 plays a major role in VD inflammation. The anti-inflammatory effect of NTP in VD mice is through regulation of TLR4. This suggested that NTP blocks the activation of sensor molecules in a neural pathway that could be a treatment for neuroinflammatory nervous system diseases. To sum up, we showed that NTP suppresses inflammation through TLR4/MyD88/NF-κB pathway. [3] Although mesenchymal stromal cell (MSC) based therapies hold promise in regenerative medicine, their clinical application remains challenging due to issues such as immunocompatibility. MSC-derived exosomes are a promising off-the-shelf therapy for promoting wound healing in a cell-free manner. However, the potential to customize the content of MSC-exosomes, and understanding how such modifications influence exosome effects on tissue regeneration remain underexplored. In this study, we used an in vitro system to compare the priming of human MSCs by 2 inflammatory inducers TNF-α and CRX-527 (a highly potent synthetic TLR4 agonist that can be used as a vaccine adjuvant or to induce anti-tumor immunity) on exosome molecular cargo, as well as on an in vivo rat ligament injury model to validate exosome potency. Different microenvironmental stimuli used to prime MSCs in vitro affected their exosomal microRNAs and mRNAs, influencing ligament healing. Exosomes derived from untreated MSCs significantly enhance the mechanical properties of healing ligaments, in contrast to those obtained from MSCs primed with inflammation-inducers, which not only fail to provide any improvement but also potentially deteriorate the mechanical properties. Additionally, a link was identified between altered exosomal microRNA levels and expression changes in microRNA targets in ligaments. These findings elucidate the nuanced interplay between MSCs, their exosomes, and tissue regeneration. [4] |
| 分子式 |
C81N2O19PH151
|
|---|---|
| 分子量 |
1488.041
|
| 精确质量 |
1,487.06
|
| 元素分析 |
C, 65.38; H, 10.23; N, 1.88; O, 20.43; P, 2.08
|
| CAS号 |
216014-14-1
|
| 相关CAS号 |
216014-14-1 (CRX-527);216014-05-0 (CRX-547);
|
| 外观&性状 |
Typically exists as solid at room temperature
|
| SMILES |
O=C([C@@H](NC(C[C@@H](CCCCCCCCCCC)OC(CCCCCCCCC)=O)=O)CO[C@H]1[C@@H]([C@H]([C@@H]([C@H](O1)CO)OP(O)(O)=O)OC(C[C@@H](CCCCCCCCCCC)OC(CCCCCCCCC)=O)=O)NC(C[C@@H](CCCCCCCCCCC)OC(CCCCCCCCC)=O)=O)O
|
| InChi Key |
REEGNIYAMZUTIO-MGSMBCBTSA-N
|
| InChi Code |
InChI=1S/C81H151N2O19P/c1-7-13-19-25-31-34-40-43-49-55-66(97-73(87)58-52-46-37-28-22-16-10-4)61-71(85)82-69(80(91)92)65-96-81-77(83-72(86)62-67(56-50-44-41-35-32-26-20-14-8-2)98-74(88)59-53-47-38-29-23-17-11-5)79(78(70(64-84)100-81)102-103(93,94)95)101-76(90)63-68(57-51-45-42-36-33-27-21-15-9-3)99-75(89)60-54-48-39-30-24-18-12-6/h66-70,77-79,81,84H,7-65H2,1-6H3,(H,82,85)(H,83,86)(H,91,92)(H2,93,94,95)/t66-,67-,68-,69+,70-,77-,78-,79-,81-/m1/s1
|
| 化学名 |
O-((2R,3R,4R,5S,6R)-3-((R)-3-(decanoyloxy)tetradecanamido)-4-(((R)-3-(decanoyloxy)tetradecanoyl)oxy)-6-(hydroxymethyl)-5-(phosphonooxy)tetrahydro-2H-pyran-2-yl)-N-((R)-3-(decanoyloxy)tetradecanoyl)-L-serinate
|
| 别名 |
CRX-527; 216014-14-1; Decanoic acid, (1R)-1-[2-[[(1S)-1-carboxy-2-[[2-deoxy-3-O-[(3R)-1-oxo-3-[(1-oxodecyl)oxy]tetradecyl]-2-[[(3R)-1-oxo-3-[(1-oxodecyl)oxy]tetradecyl]amino]-4-O-phosphono-beta-D-glucopyranosyl]oxy]ethyl]amino]-2-oxoethyl]dodecyl ester
|
| HS Tariff Code |
2934.99.9001
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
|---|---|
| 溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 0.6720 mL | 3.3601 mL | 6.7202 mL | |
| 5 mM | 0.1344 mL | 0.6720 mL | 1.3440 mL | |
| 10 mM | 0.0672 mL | 0.3360 mL | 0.6720 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。