Migalastat

别名: Amigal, DDIG, Migalastat 1-Deoxygalactonojirimycin 1-Deoxygalactostatin AT1001 AT 1001 AT-1001 GR181413A GR 181413A GR-181413A Galafold 盐酸米加司他; 米加司他盐酸盐
目录号: V21506 纯度: ≥98%
Migalastat (1-Deoxygalactonojirimycin, GR181413A; AT1001; 商品名:Galafold) 是一种药理学伴侣,充当 α-半乳糖苷酶 A (α-Gal A) 抑制剂。
Migalastat CAS号: 108147-54-2
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格
500mg
1g
Other Sizes

Other Forms of Migalastat:

  • 盐酸米加司他
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
Migalastat(1-脱氧半乳糖野尻霉素,GR181413A;AT1001;商品名:Galafold)是一种药理学伴侣,作为 α-半乳糖苷酶 A (α-Gal A) 抑制剂。它有效且选择性地结合、稳定和提高 α-Gal A 的细胞水平,对人 α-Gal A 的 IC50 为 0.04 μM。Migalastat 于 2018 年 8 月获得 FDA 批准,用于治疗成人法布里病。口服米加司他盐酸盐可减少 Fabry 转基因小鼠的组织 GL-3,以及一些 FD 患者尿液和肾脏中的 GL-3。法布里病 (FD) 是由编码溶酶体酶 α-半乳糖苷酶 A (α-Gal A) 的基因 (GLA) 突变引起的,涉及三酰鞘氨醇球蛋白 (GL-3) 和三酰鞘氨醇球蛋白 (lyso-Gb3) 的病理性积累。转基因小鼠口服米加司他盐酸盐后,肾脏、心脏和皮肤中升高的 lyso-Gb3 水平分别降低了 64%、59% 和 81%,通常等于或大于 GL-3 观察到的水平。此外,参加 2 期研究的 6 名男性 FD 患者的基线血浆 lyso-Gb3 水平显着升高。口服米加司他盐酸盐(150 mg QOD)可减少三名受试者的尿液 GL-3 和血浆 lyso-Gb3(范围:治疗 48 周内 15% 至 46%)。相比之下,三个样品的任一底物都没有减少。这些结果表明,测量组织和/或血浆 lyso-Gb3 是可行的,并且可能在米加司他盐酸盐或其他新的 FD 潜在疗法的未来研究中得到保证。
生物活性&实验参考方法
体外研究 (In Vitro)
米加司他抑制人溶酶体 a-Gal A 的 IC50 和 Ki 值为 0.04 μM [1]。
体内研究 (In Vivo)
α-半乳糖苷酶 A 活性缺陷是导致法布里病(一种 X 连锁隐性遗传病)的原因 [2]。在表达人类突变体 α-Gal A (TgM) 的转基因小鼠中,米加司他(口服灌胃,每天 3 mg/kg,持续 4 周)可增强心脏、肾脏、脾脏和肝脏中的 α-Gal A 活性,并显示剂量和时间依赖效应。 )[2]。在治疗的前两周,Migasalstat 在 TgM 的所有关键问题上表现出半衰期不到一天 [2]。在转基因小鼠中,migastat(口服灌胃,每天 100 mg/kg,持续 28 天)使肾脏、心脏和皮肤中的 lyso-Gb3 水平依次降低了 64%、59% 和 81% [3]。
细胞实验
细胞活力测定 [4]
细胞类型: EHK 细胞突变 α-Gal A
测试浓度: 10 μM
孵育时间: 9天
实验结果:Gb3积累和溶酶体体积减少。
动物实验
Animal/Disease Models: Male non-transgenic (Non-Tg) C57BL/6 mice; transgenic mice expressing human mutant R301Q α-Gal A (TgM), α-Gal A knockout mice (KO), in null background Mice expressing human R301Q α-Gal A (TgM/KO) [2]
Doses: 3 mg/kg
Route of Administration: po (oral gavage); one time/day for 4 weeks
Experimental Results: Triacylceramide (Gb3) in mouse kidneys Storage is Dramatically diminished.
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
With absorption occurring largely in the gut, the absolute bioavailability (AUC) for a single oral 150 mg migalastat hydrochloride dose or a single 2-hour 150 mg intravenous infusion was approximately 75% and Tmax was approximately 3 hours. Plasma migalastat exposure (AUC0-∞) and Cmax demonstrated dose-proportional increases at migalastat hydrochloride oral doses from 50 mg to 1,250 mg (doses from 0.5 to 8.3-fold of the approved recommended dosage). Migalastat administered with a high-fat meal (850 calories; 56% from fat), or 1 hour before a high-fat or light meal (507 calories; 30% from fat), or 1 hour after a light meal, resulted in significant reductions of 37% to 42% in mean total migalastat exposure (AUC0-∞) and reductions of 15% to 39% in mean peak migalastat exposure (Cmax) compared with the fasting state.
In a mass balance study in healthy male subjects, following oral administration of 123 mg [14C]-migalastat, approximately 77% of the total radiolabeled dose was recovered in urine and 20% of the total radiolabeled dose was recovered in feces with an overall total recovery of 98% within 96 hours post-dose. In urine, unchanged migalastat accounted for 80% of the radioactivity, which equates to 62% of the administered dose. In feces, unchanged migalastat was the only drug-related component. In plasma, unchanged migalastat accounted for approximately 77% of the plasma radioactivity, and three dehydrogenated O-glucuronide conjugated metabolites, M1 to M3, together accounted for approximately 13% of the plasma radioactivity, none of which comprised more than 6% of the radiolabeled dose. Approximately 9% of the total radioactivity in plasma was unassigned.
In healthy volunteers, the volume of distribution (Vz/F) of migalastat following ascending single oral doses (25-675 mg migalastat HCl) ranged from 77 to 133 L, indicating it is well distributed into tissues and greater than total body water (42 liters).
Following ascending single oral doses (25-675 mg migalastat hydrochloride), no trends were found for clearance (CL/F). At the 150 mg dose, CL/F was approximately 11 to 14 L/hr, while at 123 mg, the apparent clearance was calculated to be 12.5 L/hr.
Metabolism / Metabolites
Based upon in vivo data, migalastat is a substrate for uridine diphosphate glucuronosyltransferase (otherwise known as UGT or UDPGT), being a minor elimination pathway.
Biological Half-Life
The mean elimination half-life (t1/2) of migalastat ranges from approximately 3 to 5 hours for a single oral dose of 150 mg. For the dose of 123 mg, the mean elimination half-life was estimated to be 4 hours.
毒性/毒理 (Toxicokinetics/TK)
Hepatotoxicity
In placebo-controlled trials, liver test abnormalities were rare and no more common with migalastat than with placebo treatment. What abnormalities occurred were mild and resolved spontaneously without need for dose interruption. During these premarketing clinical trials and since its more widespread clinical availability, no instances of acute liver injury with jaundice have been reported attributable to migalastat. However, the total clinical experience with its use has been limited.
Likelihood score: E (unlikely cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the use of migalastat during breastfeeding. Because no information is available on the use of migalastat during breastfeeding caution should be used, especially while nursing a newborn or preterm infant.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
There was no detectable plasma protein binding following administration of [14C]-migalastat hydrochloride in the concentration range between 1 and 100 µM.
参考文献
[1]. Asano N, et al. In vitro inhibition and intracellular enhancement of lysosomal alpha-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives. Eur J Biochem. 2000 Jul;267(13):4179-86.
[2]. Ishii S, et al. Preclinical efficacy and safety of 1-deoxygalactonojirimycin in mice for Fabry disease. J Pharmacol Exp Ther. 2009 Mar;328(3):723-31.
[3]. Young-Gqamana B, et al. Migalastat HCl reduces globotriaosylsphingosine (lyso-Gb3) in Fabry transgenic mice and in the plasma of Fabry patients. PLoS One. 2013;8(3):e57631.
[4]. Welford RWD, et al. Glucosylceramide synthase inhibition with lucerastat lowers globotriaosylceramide and lysosome staining in cultured fibroblasts from Fabry patients with different mutation types. Hum Mol Genet. 2018 Oct. 27(19):3392-3403.
其他信息
Migalastat is a member of piperidines.
Fabry disease is a rare, progressive genetic disorder characterized by a defective GLA gene that causes a deficiency in the enzyme alpha-Galactosidase A (alpha-Gal A). This enzyme is responsible for breaking down glycosphingolipid substrate that, when deficient in patients with Fabry disease, builds up in the blood vessels, the kidneys, the nerves, the heart, and other organs. In the U.S., it is estimated that more than 3,000 people are living with Fabry disease, and an estimated more than 50 percent of these diagnosed patients are currently untreated. Migalastat (approved and sold under Amicus Therapeutics' brand name Galafold) is subsequently an oral pharmacological chaperone of alpha-Gal A for the treatment of Fabry disease in adults who have amenable GLA variants. In these patients, migalastat works by stabilizing the body’s dysfunctional alpha-Gal A enzyme so that it can clear the accumulation of glycosphingolipid disease substrate. Globally, it is estimated that approximately 35 to 50 percent of Fabry patients may have amenable GLA variants that are treatable with migalastat. Given the rarity of Fabry disease and the proportion of Fabry disease patients that could benefit from migalastat therapy, Amicus Therapeutics' brand name Galafold was approved using the Accelerated Approval pathway, under which the FDA may approve drugs for serious conditions where there is an unmet medical need and where a drug is shown to have certain effects that are reasonably likely to predict a clinical benefit to patients. A further study is required to verify and describe the clinical benefits of Galafold, and the sponsor will be conducting a confirmatory clinical trial of Galafold in adults with Fabry disease. Additionally, Galafold was also granted Priority Review designation, under which the FDA’s goal is to take action on an application within six months of application filing where the agency determines that the drug if approved, would provide a significant improvement in treating, diagnosing or preventing a serious condition over available therapies. Galafold also received Orphan Drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases. As of August 2018, migalastat under Amicus Therapeutics' brand name Galafold is currently approved in Australia, Canada, European Union, Israel, Japan, South Korea, Switzerland, and the United States.
Migalastat is pharmacologic chaperone of alpha-galactosidase the intrahepatic enzyme that is deficient in Fabry disease. Clinical experience with migalastat is limited, but it not been linked to serum enzyme elevations during therapy or to instances of clinically apparent acute liver injury.
See also: Migalastat Hydrochloride (has salt form); Larazotide Acetate (annotation moved to).
Drug Indication
Migalastat is approved by the FDA for the treatment of adults with a confirmed diagnosis of Fabry disease and an amenable galactosidase alpha gene (GLA) variant based on in vitro assay data. This indication is approved under accelerated approval based on a reduction in kidney interstitial capillary cell globotriaosylceramide (KIC GL-3) substrate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. Migalastat is also approved by the EMA and Health Canada to treat the same disease, although it is approved for both adults and adolescents aged 16 years and older in Europe.
FDA Label
Galafold is indicated for long-term treatment of adults and adolescents aged 16 years and older with a confirmed diagnosis of Fabry disease (α-galactosidase A deficiency) and who have an amenable mutation.
Mechanism of Action
Fabry disease is a progressive X-linked lysosomal storage disorder that affects males and females. Fabry disease-causing mutations occur in the galactosidase alpha (GLA) gene and result in a deficiency of the lysosomal enzyme alpha-galactosidase A (alpha-Gal A) that is required for glycosphingolipid substrate (GL-3 and lyso-Gb3) metabolism. Reduced alpha-Gal A activity is, therefore, associated with the progressive accumulation of glycosphingolipid substrate in vulnerable organs and tissues, which ultimately leads to the morbidity and mortality associated with Fabry disease. Migalastat is a pharmacological chaperone that reversibly binds to the active site of the alpha-galactosidase A (alpha-Gal A) protein (encoded by the galactosidase alpha gene, GLA), which is deficient in Fabry disease. This binding stabilizes alpha-Gal A allowing its trafficking from the endoplasmic reticulum into the lysosome where it exerts its action. In the lysosome, at a lower pH and at a higher concentration of relevant substrates, migalastat dissociates from alpha-Gal A allowing it to break down the glycosphingolipids globotriaosylceramide (GL-3) and globotriaosylsphingosine (lyso-Gb3). Certain GLA variants (mutations) causing Fabry disease result in the production of abnormally folded and less stable forms of the alpha-Gal A protein which, however, retain enzymatic activity. Those GLA variants, referred to as amenable variants, produce alpha-Gal A proteins that may be stabilized by migalastat thereby restoring their trafficking to lysosomes and their intralysosomal activity. The GLA mutations that are amenable and not amenable to treatment with migalastat are regularly maintained and updated on online sites that are readily accessible by healthcare providers.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C6H13NO4
分子量
199.63266
精确质量
163.084
CAS号
108147-54-2
相关CAS号
Migalastat hydrochloride;75172-81-5
PubChem CID
176077
外观&性状
Typically exists as solid at room temperature
密度
1.456g/cm3
沸点
361.1ºC at 760 mmHg
闪点
197.3ºC
蒸汽压
1.13E-06mmHg at 25°C
折射率
1.582
LogP
-2.3
tPSA
92.95
氢键供体(HBD)数目
5
氢键受体(HBA)数目
5
可旋转键数目(RBC)
1
重原子数目
11
分子复杂度/Complexity
132
定义原子立体中心数目
4
SMILES
C1[C@@H]([C@H]([C@H]([C@@H](CO)N1)O)O)O
InChi Key
LXBIFEVIBLOUGU-DPYQTVNSSA-N
InChi Code
1S/C6H13NO4/c8-2-3-5(10)6(11)4(9)1-7-3/h3-11H,1-2H2/t3-,4+,5+,6-/m1/s1
化学名
D-Galactitol, 1,5-dideoxy-1,5-imino-
别名
Amigal, DDIG, Migalastat 1-Deoxygalactonojirimycin 1-Deoxygalactostatin AT1001 AT 1001 AT-1001 GR181413A GR 181413A GR-181413A Galafold
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 5.0093 mL 25.0463 mL 50.0927 mL
5 mM 1.0019 mL 5.0093 mL 10.0185 mL
10 mM 0.5009 mL 2.5046 mL 5.0093 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们