| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 100mg | |||
| 250mg | |||
| 500mg | |||
| 10g |
|
||
| 25g |
|
||
| Other Sizes |
| 靶点 |
Biological buffer
|
|---|---|
| 体外研究 (In Vitro) |
用MOPS改善实验培养基缓冲液对柯萨奇病毒B3株28 (CVB3/28)稳定性的研究表明,MOPS (3-morpholinopropane-1-磺酸)提高了CVB3的稳定性,且效果呈浓度依赖性。在7.0 ~ 7.5的pH范围内,病毒的稳定性受到pH和MOPS浓度的影响。计算机模拟的分子对接表明,MOPS可以占据衣壳蛋白VP1的疏水口袋,其中磺酸头基可以与Arg95和Asn211在口袋开口附近形成离子和氢键。通过在最近的动力学模型中加入相应的参数,模拟了MOPS和氢离子浓度对病毒衰变速率的影响。这些结果表明,MOPS可以直接与CVB3结合并稳定病毒,可能是通过改变衣壳构象动力学。[1]
|
| 酶活实验 |
酶降解聚对苯二甲酸乙二醇酯(PET)发生在温和的反应条件下,可能会在环保塑料废物回收过程中找到应用。不同反应介质(MOPS)和磷酸钠对堆肥元基因组中同源聚酯水解酶LC - cutinase (LCC)和Thermobifida fusca KW3中同源聚酯水解酶TfCut2对PET膜的水解活性有较大影响。LCC在0.2 m Tris时PET膜的初始水解率最高,而在此缓冲液浓度下TfCut2的水解率低2.1倍。Tris浓度为1 m时,LCC的水解率下降90%以上,TfCut2的水解率下降约80%。在0.2 m MOPS或磷酸钠缓冲液中,两种酶对PET膜的最大初始水解率无显著差异。当MOPS浓度增加到1 m时,LCC的水解率降低约90%。与较高浓度的磷酸钠缓冲液的水解率相比,TfCut2的活性仍然很低。相比之下,LCC的活性在不同浓度的缓冲液中没有变化。抑制研究表明Tris和MOPS对TfCut2和LCC具有竞争性抑制作用。分子对接表明,Tris和MOPS干扰了聚合物底物在蛋白质表面凹槽中的结合。ki值和平均结合能的比较表明,MOPS是两种酶的较强抑制剂[2]。
LCC和TfCut2水解PET薄膜的研究[2] 将9 cm2(约150 mg)的聚对苯二甲酸乙二醇酯膜加入到含有0.1-2.8 μg·cm−2纯化LCC或TfCut2和0.1-1 m Tris、磷酸钠或MOPS缓冲液(pH 8.0)的反应瓶中,反应瓶的总体积为1.8 mL。在60℃下,用HCl (Tris)和NaOH (MOPS缓冲液调节缓冲液的pH。反应瓶在60°C的热激振器(1000 rpm)上孵育1小时。释放的水解产物通过RP - HPLC 39进行定量。释放的可溶性产物- tpa,单-(2 -羟乙基)对苯二甲酸酯(MHET)和双-(2 -羟乙基)对苯二甲酸酯(BHET)的总和被用来确定初始水解速率。所有的初始率至少有三份。[2] Tris和MOPS对LCC和TfCut2的抑制作用[2] 将1 - 9 cm2的聚对苯二甲酸乙二醇酯膜(约20-150 mg)加入到含有纯化LCC (1 μg)或TfCut2 (5 μg)和0.2 m磷酸钠缓冲液(pH 8.0)的反应瓶中,总容积为1.8 mL。在反应混合物中加入Tris (0.2 - 0.4 m, pH 8.0)和MOPS (0.05-0.3 m, pH 8.0)。小瓶在60°C的热激振器(1000 rpm)上孵育1小时。释放的水解产物通过RP - HPLC进行定量[2]。 |
| 细胞实验 |
将RDt3细胞(表达截断CAR的RD细胞(Cunningham etal ., 2003))和实验室菌株HeLa细胞(Carson and piruccello, 2013)保存在含有10%胎牛血清的Dulbecco改良Eagle培养基中,在37°C、6% CO2的培养箱中。每1.1 l DMEM-10%血清(完整培养基称为DMEM-10)中加入5 mL 200 nM谷氨酰胺、10 mL青霉素/链霉素(分别为10000 U/mL和10 mg/mL)和1.5 mL庆大霉素(50 mg/mL)。将MOPS加入DMEM-10至最终实验浓度,用4M NaOH调节pH至目标值。DMEM-10样品加入50-200nM的NaCl进行分离,作为盐效应的对照。在培养箱中分别放置4mL等分培养基,用于测定每个衰变时间过程结束时的培养pH。除了pH值为7.4 (6% CO2条件下DMEM-10的pH值)外,实验pH值与MOPS DMEM-10的初始调整pH值不同[1]。
|
| 参考文献 |
[1]. Steven D Carson, et al. MOPS and coxsackievirus B3 stability. Virology. 2017 Jan 15;501:183-187.
[2]. Juliane Schmidt, et al. Effect of Tris, MOPS, and phosphate buffers on the hydrolysis of polyethylene terephthalate films by polyester hydrolases. FEBS Open Bio. 2016 Jul 20;6(9):919-27. |
| 其他信息 |
3-(N-morpholino)propanesulfonic acid is a Good's buffer substance, pKa = 7.2 at 20 ℃. It is a member of morpholines, a MOPS and an organosulfonic acid. It is a conjugate acid of a 3-(N-morpholino)propanesulfonate. It is a tautomer of a 3-(N-morpholiniumyl)propanesulfonate.
3[N-Morpholino]propane sulfonic acid has been reported in Citrus reticulata and Citrus deliciosa. MOPS has a stabilizing effect on CVB3 decay kinetics, as shown here. MOPS and MES can bind to various proteins (e.g., (Fitzgerald et al., 1998; Knochel et al., 1996; Long and Yang, 2009; Sigurdardottir et al., 2015)), and the weak interaction between MES and liver fatty acid binding protein is sufficient to alter protein dynamics (Long and Yang, 2009). Molecular modelling shows that MOPS is well-accommodated in the VP1 pocket, so it is reasonable to conclude that MOPS binds CVB3 and alters the capsid dynamics with a mechanism similar to that described for other pocket-binding molecules (Reisdorph et al., 2003; Tsang et al., 2000). Based on simulated docking, MES and HEPES are also accommodated in the pocket (not shown). The model fit to the data is an extension of a model for dynamic virus where the open conformation is an intermediate to the A-particle (Carson, 2014). The modified kinetic equation, equation (8), includes terms for a competitive inhibitor (MOPS) that is mechanistically a heterotropic allosteric inhibitor (i.e., it inhibits the transition to the open intermediate conformation by stabilizing the closed conformation). The pH effect was empirically modelled with a factor where the hydrogen ion effect is half-maximal when it equals K. This is a necessary approach, pending greater knowledge, because the changes in pH affect virus, MOPS (the proportion of unprotonated MOPS is determined by pH), and other components in the experimental milieu, including any naturally occurring pocket factor(s) that might be present. Moreover, variations of the model suggested that the data were fit best when the unprotonated form of MOPS was considered to be the virus-stabilizing form. In this interpretation, MOPS and pH have antagonistic effects on virus stability: increasing pH destabilizes the virus but increases the concentration of the stabilizing form of MOPS.[1] Since the pH component of the model is empirical, the data covers a narrow range of pH values, and the calculated Kd exceeds the maximum concentration of MOPS tested, the K and Kd values, though physiologically reasonable, cannot accurately represent the true dissociation equilibrium constants. Nevertheless, the model should have reasonable predictive value for virus decay rate as a function of pH and MOPS concentration at least within the ranges studied, which are typical for such experiments. The results clearly show that MOPS and pH both affect CVB3 stability, and that MOPS (and probably other Good’s buffers) should be avoided in studies that would be affected by increased CVB3 stability.[1] |
| 分子式 |
C7H14NNAO4S
|
|---|---|
| 分子量 |
231.2451
|
| 精确质量 |
231.054
|
| 元素分析 |
C, 36.36; H, 6.10; N, 6.06; Na, 9.94; O, 27.67; S, 13.86
|
| CAS号 |
71119-22-7
|
| 相关CAS号 |
71119-22-7 (sodium salt); 1132-61-2 (free acid)
|
| PubChem CID |
3859613
|
| 外观&性状 |
Typically exists as solid at room temperature
|
| 熔点 |
277-282°C
|
| LogP |
0.272
|
| tPSA |
78.05
|
| 氢键供体(HBD)数目 |
0
|
| 氢键受体(HBA)数目 |
5
|
| 可旋转键数目(RBC) |
4
|
| 重原子数目 |
14
|
| 分子复杂度/Complexity |
233
|
| 定义原子立体中心数目 |
0
|
| SMILES |
S(C([H])([H])C([H])([H])C([H])([H])N1C([H])([H])C([H])([H])OC([H])([H])C1([H])[H])(=O)(=O)[O-].[Na+]
|
| InChi Key |
MWEMXEWFLIDTSJ-UHFFFAOYSA-M
|
| InChi Code |
InChI=1S/C7H15NO4S.Na/c9-13(10,11)7-1-2-8-3-5-12-6-4-8;/h1-7H2,(H,9,10,11);/q;+1/p-1
|
| 化学名 |
sodium;3-morpholin-4-ylpropane-1-sulfonate
|
| 别名 |
MOPS sodium salt; Sodium 3-Morpholinopropanesulfonate; MOPS-Na; 4-Morpholinepropanesulfonic acid, sodium salt; MFCD00064350; 4-Morpholinepropanesulfonic acid sodium salt; sodium 3-morpholinopropane-1-sulfonate;
|
| HS Tariff Code |
2934.99.9001
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。 |
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
H2O : ~100 mg/mL (~432.43 mM)
DMSO : ~50 mg/mL (~216.22 mM) |
|---|---|
| 溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 4.3243 mL | 21.6216 mL | 43.2432 mL | |
| 5 mM | 0.8649 mL | 4.3243 mL | 8.6486 mL | |
| 10 mM | 0.4324 mL | 2.1622 mL | 4.3243 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。