| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 500mg |
|
||
| 25g |
|
||
| Other Sizes |
| 体外研究 (In Vitro) |
假单胞菌产生葡萄糖酸钾,这是一种简单的糖酸,是主要的抗真菌代谢物。 Strait AN5 通过生物防治提供针对多种真菌病害的保护 [1]。
|
|---|---|
| 药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
Potassium is rapidly and well absorbed. A 2016 dose-response trial found that humans absorb about 94% of potassium gluconate in supplements, and this absorption rate is similar to that of potassium from potatoes. 90% of potassium is eliminated via the kidneys. A small amount is eliminated in feces and sweat. Distribution is largely intracellular, but it is the intravascular concentration that is primarily responsible for toxicity. Potassium is freely filtered by the glomerulus in the kidney. The majority of filtered potassium is reabsorbed in the proximal tubule and loop of Henle. Less than 10% of the filtered load reaches the distal nephron. In the proximal tubule of the nephron, potassium absorption is mainly passive and proportional to Na+ and water. K+ reabsorption in the thick ascending limb of Henle occurs through both transcellular and paracellular pathways. The transcellular component is regulated by potassium transport on the apical membrane Na+-K+-2Cl− cotransporter. The secretion of potassium begins in the early distal convoluted tubule of the nephron and progressively increases along the distal nephron into the cortical collecting duct. Most urinary K+ can be accounted for by electrogenic K+ secretion mediated by principal cells in the initial collecting duct and the cortical collecting duct. An electroneutral K+ and Cl− cotransport mechanism is also present on the apical surface of the distal nephron. Under conditions of potassium deficiency, reabsorption of the cation occurs in the collecting duct. This process is regulated by the upregulation in the apically located H+-K+-ATPase on α-intercalated cells. |
| 参考文献 | |
| 其他信息 |
Potassium gluconate is a L-alpha-D-Hepp-(1->7)-L-alpha-D-Hepp-(1->3)-L-alpha-D-Hepp-(1->5)-alpha-Kdo.
Potassium gluconate is a salt of [DB01345] and is classified as a food additive by the FDA. It is also used as a potassium supplement. Potassium is an essential nutrient. It is the most abundant cation in the intracellular fluid, where it plays a key role in maintaining cell function. In dietary supplements, potassium is often present as potassium chloride, but many other forms—including potassium citrate, phosphate, aspartate, bicarbonate, and **gluconate**—are also used. Potassium gluconate is believed to be more palatable and non-acidifying than potassium chloride (KCl). Drug Indication Because of potassium’s wide-ranging roles in the body, low intakes can increase the risk of illness. Potassium supplements are indicated to prevent hypokalemia in patients who would be at particular risk if hypokalemia were to develop (e.g., digitalis treated patients with significant cardiac arrhythmias). Potassium deficiency occurs when the rate of loss through renal excretion and/or loss from the gastrointestinal tract is higher than the rate of potassium intake. In addition to serving as a preventative supplement, potassium gluconate also serves as a treatment for decreased potassium levels,,. Mechanism of Action Potassium is the most abundant cation (approximately 150 to 160 mEq per liter) within human cells. Intracellular sodium content is relatively low. In the extracellular fluid, sodium predominates and the potassium content is low (3.5 to 5 mEq per liter). A membrane-bound enzyme, sodium-potassium–activated adenosinetriphosphatase (Na +K +ATPase), actively transports or pumps sodium out and potassium into cells to maintain the concentration gradients. The intracellular to extracellular potassium gradients are necessary for nerve impulse signaling in such specialized tissues as the heart, brain, and skeletal muscle, and for the maintenance of physiologic renal function and maintenance of acid-base balance. High intracellular potassium concentrations are necessary for numerous cellular metabolic processes. Intracellular K+ serves as a reservoir to limit the fall in extracellular potassium concentrations occurring under pathologic conditions with loss of potassium from the body. Therapeutic Uses IRRESPECTIVE OF THE SALT USED, POTASSIUM IS COMPLETELY DISSOCIABLE & HENCE IS UNAFFECTED IN ITS IRRITANT ACTIONS & ABSORPTION BY THE ANION IN THE COMPD. /POTASSIUM SALTS/ A SOURCE OF POTASSIUM FOR MGMNT OF HYPOKALEMIC STATES, SUCH AS OCCUR CONSEQUENT TO ADRENOCORTICOID THERAPY OR USE OF THIAZIDE DIURETICS, OR FOR DELIBERATE PRODN OF HYPERKALEMIA, AS FOR TREATMENT OF DIGITALIS INTOXICATION. ...USED TO TREAT HYPOKALEMIA ASSOC WITH HYPERCHLOREMIA (EG RENAL TUBULAR ACIDOSIS, HYPOKALEMIA ASSOC WITH ACIDOSIS). IF...USED IN PT WITH HYPOKALEMIC HYPOCHLOREMIC ALKALOSIS, A SOURCE OF CHLORIDE ION (EG, AMMONIUM CHLORIDE, LYSINE MONOHYDROCHLORIDE) SHOULD BE PROVIDED. /POTASSIUM PREPN/ Drug Warnings SUGAR-COATED POTASSIUM GLUCONATE TABLETS DISSOLVE @ HIGHER LEVEL /IN GI TRACT/ THAN DO ENTERIC-COATED TABLETS OF POTASSIUM CHLORIDE BUT, BY THIS VERY FACT, ARE FREE TO CAUSE THE IRRITATION FOR WHICH CHLORIDE TABLET WAS COATED. /THUS/...GLUCONATE HAS NO ADVANTAGE OVER NONENTERIC-COATED POTASSIUM CHLORIDE TABLETS. A FULL GLASS OF WATER TAKEN WITH /POTASSIUM GLUCONATE/...GREATLY REDUCES THE IRRITANT EFFECTS... HYPOCHLOREMIA IS FREQUENT ACCOMPANIMENT OF HYPOKALEMIA; IN SUCH INSTANCES /POTASSIUM/ CHLORIDE IS DEFINITELY PREFERRED /OVER POTASSIUM GLUCONATE/. ...SINCE GLUCONATE METABOLIZES TO BICARBONATE, IT CONTRIBUTES TO ALKALOSIS, WHICH MAY BE...PRESENT IN HYPOKALEMIA. THUS IT WOULD BE DIFFICULT TO FIND SITUATIONS IN WHICH GLUCONATE WOULD BE SUPERIOR /TO POTASSIUM CHLORIDE/. Pharmacodynamics Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid, where it plays a key role in maintaining cell function, especially in excitable cells such as skeletal muscles, the heart, and nerves. Increases in interstitial potassium play an important role in eliciting rapid vasodilation, allowing for blood flow to increase in exercising muscle. |
| 分子式 |
C6H11KO7
|
|---|---|
| 分子量 |
234.25
|
| 精确质量 |
234.014
|
| CAS号 |
299-27-4
|
| 相关CAS号 |
D-Gluconic acid calcium hydrate;66905-23-5;D-Gluconic acid (solution);526-95-4
|
| PubChem CID |
16760467
|
| 外观&性状 |
White to off-white solid powder
|
| 密度 |
1.73 g/cm3
|
| 沸点 |
673.6ºC at 760 mmHg
|
| 熔点 |
183 °C (dec.)(lit.)
|
| 闪点 |
375.2ºC
|
| tPSA |
141.28
|
| 氢键供体(HBD)数目 |
5
|
| 氢键受体(HBA)数目 |
7
|
| 可旋转键数目(RBC) |
5
|
| 重原子数目 |
14
|
| 分子复杂度/Complexity |
176
|
| 定义原子立体中心数目 |
4
|
| SMILES |
C([C@H]([C@H]([C@@H]([C@H](C(=O)[O-])O)O)O)O)O.[K+]
|
| InChi Key |
HLCFGWHYROZGBI-JJKGCWMISA-M
|
| InChi Code |
InChI=1S/C6H12O7.K/c7-1-2(8)3(9)4(10)5(11)6(12)13;/h2-5,7-11H,1H2,(H,12,13);/q;+1/p-1/t2-,3-,4+,5-;/m1./s1
|
| 化学名 |
potassium;(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoate
|
| 别名 |
Kalium Gluconate; K-Iao; HSDB 3165
|
| HS Tariff Code |
2934.99.9001
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。 |
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
H2O : ~100 mg/mL (~426.89 mM)
DMSO : ~1.25 mg/mL (~5.34 mM) |
|---|---|
| 溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 4.2689 mL | 21.3447 mL | 42.6894 mL | |
| 5 mM | 0.8538 mL | 4.2689 mL | 8.5379 mL | |
| 10 mM | 0.4269 mL | 2.1345 mL | 4.2689 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。