规格 | 价格 | 库存 | 数量 |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
Other Sizes |
|
靶点 |
EC50 (for human): 5.79 (GCGR), 0.0643 (GIPR), 0.775 nM (GLP-1R) [1]. EC50 (for mouse): 2.32 (GCGR), 0.191 (GIPR), 0.794 nM (GLP-1R) [1]. Ki (for human): 5.6 (GCGR), 0.057 (GIPR), 7.2 nM (GLP-1R) [1]. Ki (for mouse): 73 (GCGR), 2.8 (GIPR), 1.3 nM (GLP-1R)[1].
|
---|---|
体外研究 (In Vitro) |
Retatrutide (LY3437943) 针对人 GCGR、GIPR 和 GLP-1R 的 EC50 值分别为 5.79、0.0643 和 0.775 nM。 Retatrutide 对小鼠 GCGR、GIPR 和 GLP-1R 具有活性,其 EC50 值分别为 2.32、0.191 和 0.794 nM[1]。 Retatrutide 对人 GCGR、GIPR 和 GLP-1R 的结合亲和力分别为 5.6、0.057 和 7.2 nM [1]。 Retatrutide 对小鼠 GCGR、GIPR 和 GLP-1R 的结合亲和力分别为 73、2.8 和 1.3 nM [1]。
瑞曲肽(LY3437943)/LY在体外激活人GCGR、GIPR和GLP-1R[1]
LY被设计为对人类GCGR、GIPR和GLP-1R具有强效激动剂活性。为了评估LY的内在效力,使用表达人GCGR、人GIPR或人GLP-1R的HEK-293克隆细胞系来测量3′,5′-环磷酸腺苷(cAMP)的积累,作为受体激活下游的第二信使。在人类GCGR中,LY的效力是人类胰高血糖素的2.9倍(LY 50%有效浓度[EC50]=5.79 nM,SEM=0.28 nM,而人类胰高葡萄糖素EC50=1.97 nM,SEM=0.04 nM)(图1B;表S1)。LY在人类GIPR中的效力比GIP(1-42)NH2高8.9倍(LY EC50=0.0643 nM,SEM=0.0037 nM,而人类GIP(1-2)NH2 EC50=0.574 nM,SEM=0.026 nM)(图1C;表S1)。在人类GLP-1R中,LY的效力比GLP-1(7-36)NH2低2.5倍(LY EC50=0.775 nM,SEM=0.041 nM,而人类GLP-1(7-36)NH2 EC50=0.312 nM,SEM=0.007 nM)(图1D;表S1)。在功能测定中,LY是GCGR、GIPR和GLP-1R的完全激动剂(表S1)。所有cAMP测定均使用低受体密度的克隆细胞系进行。这提供了最小的信号通路扩增,并允许对分子的内在效力和功效进行最佳测量(Willard等人,2020)。使用放射性受体结合试验独立确认靶点结合(表S1)。相比之下,观察到几种比较单、双和三受体激动剂(包括SAR441255)激活这些受体的一系列效力(表S2)。为了进一步探索LY在具有内源性GIPR或GCGR表达的人细胞模型中的体外活性,我们研究了优先表达GIPR的分化人脂肪细胞和优先表达GCGR的人诱导多能干细胞衍生肝细胞的功能终点。在肝细胞中,LY在刺激葡萄糖输出方面表现出与天然胰高血糖素相似的效力(图1E)。在脂肪细胞中,LY比天然GIP更能刺激脂肪分解(图1F)。综上所述,这些体外研究结果表明,LY是人类GCGR、GIPR和GLP-1R的强效激动剂。 |
体内研究 (In Vivo) |
Retatrutide (LY3437943) (皮下注射;0.47 mg/kg;单剂量)通过GIP或GLP-1受体增强ipGTT的糖耐量,并参与体内GCGR[1]。通过激活胰高血糖素受体,瑞他曲肽(皮下注射;10 mL/kg;每 3 天;持续 21 天)显着减轻体重并增加能量消耗[1]。瑞他曲肽是可接受且安全的[1]。
瑞他曲肽(LY3437943)/LY是体内GCGR、GIPR和GLP-1R的三重激动剂[1] 为了进一步在体内表征LY,采用了多种转基因小鼠模型来评估靶受体的参与以及对营养和能量代谢的功能贡献。首先,我们在体外受体结合亲和力和功能效力测定中证实,LY是小鼠GCGR、GIPR和GLP-1R的强效激动剂(表S1)。我们表征了LY在小鼠体内的药代动力学特性,以评估给药时间(表S3;图S1)。为了评估LY的GIPR和GLP-1R活性,使用腹腔葡萄糖耐量试验(ipGTT)在正常(野生型)、GIPR阴性(GIPR−/−小鼠)和GLP-1R-阴性小鼠(GLP-1R−/-小鼠)中评估体内血糖控制。与semaglutide和长效GIP类似,LY治疗改善了所有3种基因型的葡萄糖波动(图1G-1I)。总之,这些结果表明,LY可以通过GIP或GLP-1受体改善ipGTT中的葡萄糖耐量。为了评估胰高血糖素活性,我们在LY给药前24小时用GIPR抗体拮抗剂治疗GLP-1R-null小鼠,从而阻断GIPR和GLP-1R活性(Killion等人,2018)。由于小鼠缺乏GIPR和GLP-1R活性,LY在给药后1小时增加了血浆葡萄糖(图1J)。然而,这种葡萄糖的增加被GCGR抗体拮抗剂的预处理所阻断(Jun等人,2015),表明LY在体内功能性地与GCGR结合,在没有GIPR和GLP-1R激动作用的情况下进行测试时会增加血浆葡萄糖(图1J)。重要的是,虽然LY中存在GCGR活性,但对GIP和GLP-1受体的活性产生的促胰岛素作用取代了GCGR对葡萄糖耐量的作用,因为LY(0.1 nmol/kg)在ipGTT期间对野生型小鼠葡萄糖降低的ED50与替西帕肽(0.2 nmol/kg。 瑞他曲肽(LY3437943)/LY促进肥胖小鼠的体重减轻[1] 为了研究对体重、能量代谢、身体成分和肝脂肪变性的影响,对C57/Bl6饮食诱导的肥胖(DIO)小鼠施用LY。LY剂量依赖性地降低体重(ED50:4.73 nmol/kg)(图2A和2C)和卡路里摄入量(图2B)。体重减轻主要是由于脂肪量减少(图2D),对瘦体重的影响最小(图2E),如脂肪量/瘦体重比所示(图2F)。LY降低了血糖和血浆胰岛素(图2G和2H),表明血糖控制得到改善,并表明胰岛素敏感性可能得到改善,这与双重GIPR/GLP-1R激动症的研究结果一致(Samms等人,2021)。LY改善了肝脏健康,表现为血浆丙氨酸氨基转移酶和肝脏甘油三酯的降低(图2I和2J)。在另一项实验中,我们测试了LY与替西帕肽对肥胖小鼠体重减轻的疗效。当每天以10nmol/kg的剂量治疗时,LY在肥胖小鼠中比替西帕肽促进了更多的体重减轻(图2K),这与卡路里摄入量的减少有关(图2L)。这可能部分解释了LY的额外减肥。为了阐明这一点,我们对LY进行了额外的研究,以评估能量消耗对减肥的贡献。 瑞他曲肽(LY3437943)/LY通过参与肥胖小鼠的胰高血糖素受体增加能量消耗[1] 我们之前已经证明,使用替西帕肽治疗会对增加能量消耗产生微小但显著的影响(Coskun等人,2018),但使用替西帕肽减轻小鼠体重的一个关键驱动因素是减少总热量摄入。为了评估LY对热量摄入和能量消耗的影响,我们在热中性(27°C)下进行了一系列实验。我们研究了与热量摄入匹配(CIM)组相比,10 nmol/kg的LY的效果。在治疗期的前10天,LY导致体重减轻约35%,而CIM导致体重减轻20%(图3A)。在这10天的时间里,卡路里摄入量大幅下降(图3B)。CIM组热量摄入的减少伴随着能量消耗的显著减少。随着对热量摄入的初始抑制治疗作用减弱(图3B),CIM组体重逐渐增加,能量消耗下降的恢复缓慢(图3C)。相比之下,由于维持了治疗前的能量消耗水平(图3C),用LY治疗的小鼠继续保持初始体重减轻(图3B)。与CIM组相比,LY增加了能量消耗(图3C),导致显著的负能量平衡(图3D)和脂质氧化,如呼吸交换率下降所示(图3E)。与其他组相比,LY治疗没有改变运动活动(图3F)。CIM和LY治疗组都因体重减轻而减少了脂肪量和瘦肉量(图3G和3H)。虽然两组之间的瘦体重变化相似,但LY对脂肪量的减少明显大于CIM组。GCGR抗体拮抗剂使LY的体重减轻最小化(图3I),与CIM组中观察到的水平基本一致(图3B)。给予GCGR抗体拮抗剂并没有改变LY对减少热量摄入的总体影响(图3J),但阻断了LY对能量消耗的影响(图3K),这提供了证据表明GCGR激动是能量消耗的关键因素。 |
酶活实验 |
受体结合测定[1]
如前所述(Willard等人,2020),使用来自表达人或小鼠GIPR、GLP-1R或GCGR的人胚胎肾(HEK-293)克隆细胞系的膜,使用闪烁接近试验格式,用小麦胚凝集素珠进行受体结合试验(Samms等人,2021;Willard等人,2020)。在每种受体结合试验中,使用未标记的GCG/GIP/GLP-1非特异性结合对照品,GCG为1μM终末,GIP为0.25μM终终末,GLP-1为0.25μM终末。每种受体结合试验的放射配体浓度如下:[125I]-GCG(最终0.15 nM),[125I]-GIP(最终0.075-0.15 nM,[125I-GLP-1(最终0.15 nM))。在每个相应的受体结合试验中添加GCGR膜(1.5μg/孔人或6.5μg/孔小鼠)、GIPR膜(3.0μg/孔人类或7.0μg/孔鼠标)或GLP-1R膜(0.5μg/孔人体或0.12μg/孔老鼠)。Ki值通过非线性回归分析使用结合的放射性标记量与添加的肽浓度来确定。GIP放射性示踪剂通过HPLC纯化,描述为[125I]-Tyr1-GIP(1-42)和[125I]-Tyr10-GIP(1-44)的1:1混合物。用非放射性肽类似物[127I]-Tyr1-GIP(1-42)和[127]-Tyr10-GIP(1-44)进行同源和异源竞争实验,以确保GIPR高亲和力结合位点的定量。使用合成的[127I]-Tyr氨基酸构建块生成肽类似物。 人受体功能体外测定[1] LY的功能活性是通过HEK-293克隆细胞系中3′,5′-环磷酸腺苷(cAMP)的形成来测定的,这些细胞系具有低表达密度的人GCGR(1300个受体/细胞)、人GIPR(1700个受体/电池)或人GLP-1R(1400个受体/细胞)(Willard等人,2020)。如前所述,对人GLP-1R和人GIPR低表达克隆细胞系进行了一代低表达人GCGR克隆细胞系的研究(Willard等人,2020)。如前所述(Willard等人,2020),在无脂肪酸、无球蛋白的人血清白蛋白存在和不存在的情况下进行cAMP形成测定,并使用PerkinElmer Envision仪器检测荧光信号,激发波长为320nm,发射波长为665nm和620nm。 小鼠受体功能体外测定[1] 如前所述(Samms等人,2021),使用表达小鼠GCGR、小鼠GIPR或小鼠GLP-1R的HEK-293克隆细胞系中cAMP的形成来测定LY的功能活性。如上所述,在没有血清白蛋白的情况下进行cAMP形成测定,并使用PerkinElmer Envision仪器检测荧光信号,激发波长为320nm,发射波长为665和620nm。 人GLP-1Rβ-Arrestin募集试验[1] 如所述,使用GLP-1R CHO-K1 PathHunter细胞进行ARRB2招募(Willard等人,2020)。在没有白蛋白的情况下进行测定,加入PathHunter检测试剂后,使用Envision平板读数器读取化学发光信号。 |
细胞实验 |
人肝细胞测定[1]
人诱导多能干肝细胞在补充有抑瘤素M、庆大霉素和牛血清白蛋白的RPMI 1640培养基中培养。为了使细胞适应无葡萄糖条件,在用含有MgSO4(0.82 mM)、NaHCO3(9 mM)、HEPES(0.02 mM)、无脂肪酸BSA(0.1%)、CaCl2(2.25 mM)、NaCl(117.6 mM)、KCl(5.4 mM)和KH2PO4(1.5 mM)的无葡萄糖HGO缓冲液处理之前,洗涤细胞并孵育1小时。孵育后,移除HGO缓冲液,用HGO缓冲溶液中浓度响应的测试肽处理细胞2小时。处理后,收集条件培养基并分析葡萄糖含量,以评估细胞向HGO缓冲区的葡萄糖输出。按照制造商的方案,使用Amplex Red葡萄糖氧化酶检测试剂盒进行葡萄糖分析。 将测试肽的浓度响应曲线绘制为条件培养基中的葡萄糖(y轴)与分子的对数浓度(x轴)。EC50使用4参数可变斜率非线性回归拟合分析(GraphPad Prism 7.0)确定。为了评估效力,EC50被报告为3个实验的平均值,每个实验中每个剂量有3个生物重复。 人脂肪细胞测定[1] 分离和培养的人前脂肪细胞分化为成熟的脂肪细胞,在前脂肪细胞培养基中孵育1天,然后在脂肪细胞分化培养基中培养6天,在脂肪细胞维持培养基中再培养6天。根据培养的人脂肪细胞脂解分析试剂盒对分化的脂肪细胞进行脂解分析。简而言之,将细胞洗涤两次,然后在测定缓冲液中用浓度响应的测试肽处理3小时。孵育后,将条件培养基转移到单独的平板上,并按照试剂盒方案评估甘油含量。 将测试肽的浓度响应曲线绘制为条件培养基中的甘油(y轴)与肽的对数浓度(x轴)。EC50使用4参数变斜率非线性回归拟合(GraphPad Prism 7.0)确定。 |
动物实验 |
Animal/Disease Models: Male CD-1 mice[1]
Doses: 0.47 mg/kg Route of Administration: subcutaneous (sc) administration, single Experimental Results: AUClast, ng*h/mL AUC0-∞, ng*h/mL Cmax, ng/mL Tmax, h t1 /2, h CLF, mL/h/kg 41135 41905 1680 12 21 11.22. Animal/Disease Models: Diet-induced obese (DIO) male C57/BL6 black mouse (24-25 weeks, 40-51 g)[1] Doses: 10 mL /kg Route of Administration: subcutaneous (sc) injection, cycle every 3 days, for 21 days Experimental Results: diminished body weight and improved glycemic control. In vivo efficacy studies in obese mice [1] Diet-induced obese (DIO) male C57/Bl6 mice 24 weeks to 25 weeks old, maintained on a calorie-rich diet since arrival, were used in the following studies. Animals were individually housed in a temperature-controlled (24°C to 27°C) facility with a 12-h light/dark cycle (lights on 22:00) and free access to food and water. After a minimum of 2 weeks acclimation to the facility, the mice were randomized according to their body weight, so each experimental group of animals would have similar body weight. Mice body weight ranged from 40 g to 51 g. All groups contained 6 mice. Vehicle (20 mM Tris-HCl at pH 8.0) or LY (dose range 0.3 nmol/kg to 30 nmol/kg) dissolved in vehicle was administered by subcutaneous (SC) injection (10 mL/kg) to ad libitum-fed DIO mice 30 min–90 min prior to the onset of the dark cycle every 3 days for 21 days. SC injections were administered on Days 1, 4, 7, 10, 13, 16 and 19. Body weight and food intake were measured daily throughout the study. General animal health and welfare was monitored by veterinary staff in all studies. No adverse effects were reported. Absolute changes in body weight were calculated by subtracting the body weight of the same animal prior to the first injection of molecule. On Days 0 and 21, total fat mass was measured by quantitative nuclear magnetic resonance. On Day 21, animals were sacrificed prior to dark photoperiod, blood was collected by cardiac stick and plasma was analyzed by a clinical chemistry analyzer. Liver triglycerides were determined from homogenates of livers collected at sacrifice. Insulin was measured via Meso Scale Discovery enzyme-linked immunosorbent assay kit. For indirect calorimetry studies, animals were placed in TSE PhenoMaster/LabMaster calorimeter for 3 days of acclimation and all the experiments were performed at thermoneutrality (27°C). On Days 0 and 22, total fat mass was measured by nuclear magnetic resonance (NMR) using an Echo Medical System instrument. Vehicle or Retatrutide (LY3437943) (10 nmol/kg) were subcutaneously administered to ad libitum fed DIO mice 30 to 90 min prior to the onset of the dark cycle daily for 22 days. To determine the extent of the effect of LY34379343 treatment on body weight, body metabolism or energy metabolism occurred independently of changes of calorie intake, a group of mice was matched to that consumed by Retatrutide (LY3437943) group. In another experiment, mice were treated weekly by either control or GCGR antibody antagonist at 10 mg/kg dose. Daily body weight and food intake were measured throughout the study. Absolute changes in body weight were calculated by subtracting the body weight of the same animal prior to the first injection of molecule. Heat and respiratory exchange ratio (RER) were measured by indirect calorimetry using an open-circuit calorimetry system. RER is the ratio of the volume of CO2 produced (VCO2) to the volume of O2 consumed (VO2). Non-clinical safety CV study in non-human primates [1] Single dose monkey CV study with Retatrutide (LY3437943) [1] Eighteen male cynomolgus monkeys (six monkeys/group) were administered a single subcutaneous dose of vehicle control article or 0.05 or 0.5 mg/kg Retatrutide (LY3437943) on Day 1 in a parallel dosing design. Assessment of cardiovascular function was based on qualitative electrocardiography (ECG) evaluation and quantitative analyses of ECG (QT interval and corrected QT [QTc]) and hemodynamic (heart rate and dP/dtmax derived from the left ventricular pressure waveform; systolic, diastolic, and mean arterial pressures; and arterial pulse pressure) parameters. The ECG and hemodynamic data were recorded by telemetry for at least 90 min prior to dosing and continuously through at least 169 h postdose. 6-Month repeat dose toxicity study in monkeys with Retatrutide (LY3437943). [1] Male and female cynomolgus monkeys were assigned to four groups, and subcutaneous doses were administered at 0.05, 0.15, 0.5 mg/kg. Telemetry measurements were collected and analyzed once for each sex during the predose phase; on Days 8 (Groups 1 through 3 only), 36 (Groups 1 and 4 only; due to the need for dosing suspensions in Group 4 during the first weeks of study), 99, and 169 of the dosing phase; and on Day 108 (males) or 106 (females) of the recovery phase. |
参考文献 | |
其他信息 |
With an increasing prevalence of obesity, there is a need for new therapies to improve body weight management and metabolic health. Multireceptor agonists in development may provide approaches to fulfill this unmet medical need. LY3437943 is a novel triple agonist peptide at the glucagon receptor (GCGR), glucose-dependent insulinotropic polypeptide receptor (GIPR), and glucagon-like peptide-1 receptor (GLP-1R). In vitro, LY3437943 shows balanced GCGR and GLP-1R activity but more GIPR activity. In obese mice, administration of LY3437943 decreased body weight and improved glycemic control. Body weight loss was augmented by the addition of GCGR-mediated increases in energy expenditure to GIPR- and GLP-1R-driven calorie intake reduction. In a phase 1 single ascending dose study, LY3437943 showed a safety and tolerability profile similar to other incretins. Its pharmacokinetic profile supported once-weekly dosing, and a reduction in body weight persisted up to day 43 after a single dose. These findings warrant further clinical assessment of LY3437943.[1]
Conclusions and future directions In conclusion, Retatrutide (LY3437943)/LY possesses an imbalanced activity at GIPR (in favor of GIPR activity) and balanced activity at GCGR and GLP-1R. LY achieved body weight reductions of up to 45% in obese mice with glucose-lowering efficacy and improvement in insulin resistance. Our data demonstrate that the GCGR activity in the triagonist accounts for 30%–35% of the observed body weight loss in mice as a result of increased energy expenditure. Healthy participants in the single ascending dose study showed that LY was well tolerated. The body weight reduction after a single administration of LY was maintained up to day 43 post-dose with an initial decrease in appetite. The observed safety, tolerability, and efficacy profile of LY in this study support evaluation of multiple ascending doses of LY in participants with obesity (NCT04881760) and T2D (NCT04867785).[1] |
分子式 |
C221H341N45O69
|
---|---|
分子量 |
4732.33
|
精确质量 |
4730.4784
|
CAS号 |
2381089-83-2
|
相关CAS号 |
Retatrutide TFA;Retatrutide acetate
|
PubChem CID |
171390338
|
序列 |
Tyr-{Aib}-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Ile-{α-Me-Leu}-Leu-Asp-Lys-{diacid-C20-gamma-Glu-(AEEA)-Lys}-Ala-Gln-{Aib}-Ala-Phe-Ile-Glu-Tyr-Leu-Leu-Glu-Gly-Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-NH2
|
外观&性状 |
White to off-white solid powder
|
LogP |
-6.3
|
tPSA |
1780 Ų
|
氢键供体(HBD)数目 |
58
|
氢键受体(HBA)数目 |
70
|
可旋转键数目(RBC) |
159
|
重原子数目 |
335
|
分子复杂度/Complexity |
11500
|
定义原子立体中心数目 |
36
|
SMILES |
CC[C@H](C)C(C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(=O)O)C(=O)NCC(=O)NCC(=O)N2CCC[C@H]2C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N3CCC[C@H]3C(=O)N4CCC[C@H]4C(=O)N5CCC[C@H]5C(=O)N[C@@H](CO)C(=O)N)NC(=O)[C@H](CC6=CC=CC=C6)NC(=O)[C@H](C)NC(=O)C(C)(C)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](C)NC(=O)[C@H](CCCCNC(=O)COCCOCCNC(=O)CC[C@@H](C(=O)O)NC(=O)CCCCCCCCCCCCCCCCCCC(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@](C)(CC(C)C)NC(=O)C([C@@H](C)CC)NC(=O)[C@H](CO)NC(=O)[C@H](CC7=CC=C(C=C7)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC8=CC=CC=C8)NC(=O)[C@H]([C@@H](C)O)NC(=O)CNC(=O)[C@H](CCC(=O)N)NC(=O)C(C)(C)NC(=O)[C@H](CC9=CC=C(C=C9)O)N
InChIKey: MLOLQJNKXBNWFW-SAGGEDDASA-N
|
InChi Key |
MLOLQJNKXBNWFW-SAGGEDDASA-N
|
InChi Code |
InChI=1S/C221H342N46O68/c1-23-124(11)179(208(322)241-144(83-88-176(291)292)192(306)245-150(105-134-69-75-137(276)76-70-134)196(310)244-148(100-121(5)6)194(308)243-147(99-120(3)4)193(307)240-142(82-87-175(289)290)187(301)230-110-169(282)229-113-173(286)264-92-51-61-161(264)206(320)253-158(116-270)203(317)251-157(115-269)189(303)232-111-170(283)233-128(15)212(326)266-94-53-63-163(266)214(328)267-95-54-64-164(267)213(327)265-93-52-62-162(265)207(321)250-156(114-268)183(226)297)258-200(314)152(103-131-55-41-39-42-56-131)242-185(299)127(14)235-216(331)219(18,19)262-205(319)145(80-85-166(225)279)237-184(298)126(13)234-190(304)140(60-48-50-90-227-172(285)119-335-98-97-334-96-91-228-167(280)86-81-146(215(329)330)236-168(281)65-45-37-35-33-31-29-27-25-26-28-30-32-34-36-38-46-66-174(287)288)238-191(305)141(59-47-49-89-222)239-198(312)154(107-177(293)294)247-195(309)149(101-122(7)8)256-218(333)221(22,109-123(9)10)263-211(325)180(125(12)24-2)259-204(318)160(118-272)252-197(311)151(106-135-71-77-138(277)78-72-135)246-199(313)155(108-178(295)296)248-202(316)159(117-271)254-210(324)182(130(17)274)260-201(315)153(104-132-57-43-40-44-58-132)249-209(323)181(129(16)273)257-171(284)112-231-188(302)143(79-84-165(224)278)255-217(332)220(20,21)261-186(300)139(223)102-133-67-73-136(275)74-68-133/h39-44,55-58,67-78,120-130,139-164,179-182,268-277H,23-38,45-54,59-66,79-119,222-223H2,1-22H3,(H2,224,278)(H2,225,279)(H2,226,297)(H,227,285)(H,228,280)(H,229,282)(H,230,301)(H,231,302)(H,232,303)(H,233,283)(H,234,304)(H,235,331)(H,236,281)(H,237,298)(H,238,305)(H,239,312)(H,240,307)(H,241,322)(H,242,299)(H,243,308)(H,244,310)(H,245,306)(H,246,313)(H,247,309)(H,248,316)(H,249,323)(H,250,321)(H,251,317)(H,252,311)(H,253,320)(H,254,324)(H,255,332)(H,256,333)(H,257,284)(H,258,314)(H,259,318)(H,260,315)(H,261,300)(H,262,319)(H,263,325)(H,287,288)(H,289,290)(H,291,292)(H,293,294)(H,295,296)(H,329,330)/t124-,125-,126-,127-,128-,129+,130+,139-,140-,141-,142-,143-,144-,145-,146-,147-,148-,149-,150-,151-,152-,153-,154-,155-,156-,157-,158-,159-,160-,161-,162-,163-,164-,179?,180?,181-,182-,221+/m0/s1
|
化学名 |
20-[[(1S)-4-[2-[2-[2-[[(5S)-5-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(3S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S,3R)-2-[[2-[[(2S)-5-amino-2-[[2-[[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]-2-methylpropanoyl]amino]-5-oxopentanoyl]amino]acetyl]amino]-3-hydroxybutanoyl]amino]-3-phenylpropanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-hydroxypropanoyl]amino]-3-methylpentanoyl]amino]-2,4-dimethylpentanoyl]amino]-4-methylpentanoyl]amino]-3-carboxypropanoyl]amino]hexanoyl]amino]-6-[[(2S)-1-[[(2S)-5-amino-1-[[1-[[(2S)-1-[[(2S)-1-[[(3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[[2-[(2S)-2-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-[[(2S)-1-amino-3-hydroxy-1-oxopropan-2-yl]carbamoyl]pyrrolidine-1-carbonyl]pyrrolidine-1-carbonyl]pyrrolidin-1-yl]-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]carbamoyl]pyrrolidin-1-yl]-2-oxoethyl]amino]-2-oxoethyl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-1-oxopropan-2-yl]amino]-2-methyl-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-6-oxohexyl]amino]-2-oxoethoxy]ethoxy]ethylamino]-1-carboxy-4-oxobutyl]amino]-20-oxoicosanoic acid
|
别名 |
LY3437943; Retatrutide sodium; LQ42M82ZU6; LY-3437943; LY-3437943 SODIUM; Tyr-{Aib}-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Ile-{alpha-Me-Leu}-LeuAsp-Lys-{diacid-C20-gamma-Glu-(AEEA)-Lys}-Ala-Gln-{Aib}-Ala-PheIle-Glu-Tyr-Leu-Leu-Glu-Gly-Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-SerNH2 (Sodium salt)
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮和光照。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO: 50 mg/mL (10.57 mM)
H2O: 33.33 mg/mL (7.04 mM) |
---|---|
溶解度 (体内实验) |
Note: 如何溶解多肽产品?请参考本产品网页右上角“产品说明书“文件,第4页。 注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。 注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 0.2113 mL | 1.0566 mL | 2.1131 mL | |
5 mM | 0.0423 mL | 0.2113 mL | 0.4226 mL | |
10 mM | 0.0211 mL | 0.1057 mL | 0.2113 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。