| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 50mg |
|
||
| 100mg |
|
||
| 250mg |
|
||
| 500mg |
|
||
| 1g |
|
||
| 5g |
|
||
| Other Sizes |
| 药代性质 (ADME/PK) |
Metabolism / Metabolites
Enteric bacterial and hepatic azoreductase enzymes are capable of reducing azo dyes to yield the constituent aromatic amines. Azo dyes based on benzidine and benzidine congeners have received particular attention because of their widespread use and the known carcinogenicity of benzidine to humans. Azo dyes based on beta-diketone coupling components exist preferentially as the tautomeric hydrazones. A series of hydrazone dyes based on benzidine and benzidine congeners was prepared and characterized by NMR and UV-visible spectroscopy. These dyes were tested for mutagenicity using a modified Ames assay and, unlike the true azo dyes, showed no significant mutagenic activity. The hydrazone dyes were resistant to enzymatic reduction by FMN-supplemented hamster-liver post-mitochondrial supernatant (S-9); under identical conditions, azo dyes such as trypan blue were rapidly reduced. Benzidine and several derivatives are activated to mutagenic species in an H2O2-dependent Ames test system. Optical and electron paramagnetic resonance (EPR) spectroscopy are employed in studies of the H2O2-dependent oxidation of benzidine and 3,5,3',5'-tetramethylbenzidine (TMB) catalyzed by intact bacteria, and provide direct evidence for peroxidase activity in Salmonella typhimurium. The acetylase-proficient Ames tester strain TA98 and its acetylase-deficient derivative TA98/1,8-DNP6 are equally responsive to H2O2-dependent mutagenicity; enzymatic acetylation appears not to be involved in activation of benzidine, in this system. The H2O2-dependent mutagenicity of benzidine and oxidation of TMB are observed when the assays are carried out in acetate buffer (pH 5.5), but not in 2-[N-morpholino]ethane sulfonic acid (MES) buffer, at the same pH. This difference is interpreted in terms of the effects of these buffers on the intracellular pH of the bacteria. The H2O2-dependent mutagenicity of several benzidine congeners is also described. Dichlorobenzidine can be peroxidatively activated in Salmonella typhimurium Ames tester strains. Mutagenicity is observed when an S. typhimurium strain which is sensitive to frame-shift mutagens is incubated with dichlorobenzidine and hydrogen peroxide. In this paper, we show that the bacterial enzyme, hydroperoxidase I, is responsible for much of this activation. We constructed isogenic tester strains which lack hydroperoxidase I or II, due to Tn10 insertions in the structural genes encoding these proteins. Hydrogen peroxide-dependent mutagenicity of dichlorobenzidine was measured in each strain. A tester strain lacking hydroperoxidase I activity was much less sensitive than was the parent strain. When hydroperoxidase I activity was restored in this strain, via a plasmid-borne copy of the gene encoding the Escherichia coli protein, sensitivity to peroxide-dependent dichlorobenzidine mutagenicity was enhanced. An accumulation of insoluble, finely granular material has been observed under the pigmented surface of Xenopus eggs by a specialized "dry fracture" technique and scanning electron microscopy. Cortical granules and pigment granules can be recognized with the techniques and can be seen to be embedded in the material. Thin sections show that the region also contains mitochondria and membranous vesicles or reticula. Yolk platelets are largely excluded from the heaviest accumulations of the material. The substance is most dense just under the cortex and grades off gradually into the more diffuse, yolk-containing network of the endoplasm. The accumulation of material is much thicker in the animal hemisphere of the egg than in the vegetal hemisphere, and the pigment embedded in it defines the pigmented area of the animal hemisphere. In the pigmented area the material excludes yolk for a thickness of 3-7+ microns from the surface. In the vegetal hemisphere there is no such accumulation and yolk platelets can be found almost touching the plasmalemma. Cortical contractions have been experimentally induced in eggs. Their relative strength correlates with the relative thickness of the finely granular, subcortical material. During contraction the material accumulates to much greater thicknesses, excluding yolk from thicknesses of 15-30+ microns from the surface. The contracting entity is, or is in, the finely granular material. Injection of cytochalasins into the eggs inhibits cleavage furrow operation but does not inhibit the induced cortical contractions. The thus do not seem to be dependent on actin microfilamentogenesis as is the operation of the contractile ring of the cleavage furrow. The differential sensitivity to cytochalasins of the contractile ring and the system responding in the induced cortical contractions, suggests a two-component system for cortical contractions in the egg. A model is presented which accommodates the available data. For more Metabolism/Metabolites (Complete) data for 3,3',5,5'-TETRAMETHYLBENZIDINE (6 total), please visit the HSDB record page. |
|---|---|
| 毒性/毒理 (Toxicokinetics/TK) |
Non-Human Toxicity Values
LD50 Mouse ip 135 mg/kg |
| 其他信息 |
3,3',5,5'-tetramethylbenzidine appears as pale yellow crystals or off-white powder. (NTP, 1992)
Mechanism of Action Histological analysis of surgically removed adrenal masses often fails to differentiate between benign and malignant tumors. In normal cells, the telomeric ends of the chromosomes are shortened with each cell division, leading to chromosome destabilization and cellular senescence after a critical number of cell cycles. In tumor cells, telomere shortening is prevented by a specific DNA polymerase, called telomerase. In an effort to clarify the role of telomerase in the pathogenesis of adrenal tumors, and to test whether its activity could serve as marker of malignancy, we measured telomerase activity in 41 human adrenal tissue samples that were classified both by the clinical course and by histological examination. Telomerase activity was determined by TRAP ELISA and expressed as high (>50% of positive control telomerase activity), medium (31-50%), low (11-30%), very low (< or = 10%), or absent (0%). The 8 normal adrenal tissue samples showed very low levels of telomerase activity. Mean telomerase activity also very low in 3/3 incidentalomas, 6/6 Cushing adenomas, 6/6 Conn adenomas, 7/7 adrenocortical carcinomas, 8/8 benign pheochromocytomas, and 2/3 malignant pheochromocytomas. In contrast, one malignant pheochromocytoma showed high telomerase activity. These data indicate that telomerase activity may not be a suitable marker for malignancy in the adrenal gland. Our results also challenge the current dogma of close correlation between cell dedifferentiation and telomerase activity. Earlier investigations of the oxidation of 3,5,3',5'-tetramethylbenzidine (TMB) using horseradish peroxidase and prostaglandin H-synthase have shown the formation of a cation free radical of TMB in equilibrium with a charge-transfer complex, consistent with either a two- or a one-electron initial oxidation. In this work, we exploited the distinct spectroscopic properties of myeloperoxidase and its oxidized intermediates, compounds I and II, to establish two successive one-electron oxidations of TMB. By employing stopped-flow techniques under transient-state and steady-state conditions, we also determined the rate constants for the elementary steps of the myeloperoxidase-catalyzed oxidation of TMB at pH 5.4 and 20 degrees C. The second-order rate constant for compound I formation from the reaction of native enzyme with H2O2 is 2.6 x 10(7) M-1 s-1. Compound I undergoes a one-electron reduction to compound II in the presence of TMB, and the rate constant for this reaction was determined to be (3.6 +/- 0.1) x 10(6) M-1 s-1. The spectral scans show that compound II accumulates in the steady state. The rate constant for compound II reduction to native enzyme by TMB obtained under steady-state conditions is (9.4 +/- 0.6) x 10(5) M-1 s-1. The results are applied to a new, more accurate assay for myeloperoxidase based upon the formation of the charge-transfer complex between TMB and its diimine final product. |
| 分子式 |
C16H20N2
|
|---|---|
| 分子量 |
240.3434
|
| 精确质量 |
240.162
|
| CAS号 |
54827-17-7
|
| 相关CAS号 |
TMB dihydrochloride;64285-73-0;TMB monosulfate;54827-18-8;TMB dihydrochloride hydrate;312693-82-6
|
| PubChem CID |
41206
|
| 外观&性状 |
White to light yellow solid powder
|
| 密度 |
1.1±0.1 g/cm3
|
| 沸点 |
368.6±37.0 °C at 760 mmHg
|
| 熔点 |
168-171 °C(lit.)
|
| 闪点 |
210.8±26.0 °C
|
| 蒸汽压 |
0.0±0.8 mmHg at 25°C
|
| 折射率 |
1.618
|
| LogP |
3.4
|
| tPSA |
52.04
|
| 氢键供体(HBD)数目 |
2
|
| 氢键受体(HBA)数目 |
2
|
| 可旋转键数目(RBC) |
1
|
| 重原子数目 |
18
|
| 分子复杂度/Complexity |
226
|
| 定义原子立体中心数目 |
0
|
| InChi Key |
UAIUNKRWKOVEES-UHFFFAOYSA-N
|
| InChi Code |
InChI=1S/C16H20N2/c1-9-5-13(6-10(2)15(9)17)14-7-11(3)16(18)12(4)8-14/h5-8H,17-18H2,1-4H3
|
| 化学名 |
4-(4-amino-3,5-dimethylphenyl)-2,6-dimethylaniline
|
| HS Tariff Code |
2934.99.9001
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 本产品在运输和储存过程中需避光。 |
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
DMSO : ~25 mg/mL (~104.02 mM)
|
|---|---|
| 溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 4.1608 mL | 20.8039 mL | 41.6077 mL | |
| 5 mM | 0.8322 mL | 4.1608 mL | 8.3215 mL | |
| 10 mM | 0.4161 mL | 2.0804 mL | 4.1608 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。